

AIR-COOLED LIQUID CHILLERS HERMETIC SCROLL

INSTALLATION, OPERATION, MAINTENANCE

New Release

Form 150.66-NM2 (906)

035-21552-000

YCAL0012EC - YCAL0032EC AIR-COOLED SCROLL CHILLERS STYLE D (60 Hz) 9-1/2 - 28 TON

R-22

50091

IMPORTANT! READ BEFORE PROCEEDING! GENERAL SAFETY GUIDELINES

This equipment is a relatively complicated apparatus. During installation, operation, maintenance or service, individuals may be exposed to certain components or conditions including, but not limited to: refrigerants, oils, materials under pressure, rotating components, and both high and low voltage. Each of these items has the potential, if misused or handled improperly, to cause bodily injury or death. It is the obligation and responsibility of operating/service personnel to identify and recognize these inherent hazards, protect themselves, and proceed safely in completing their tasks. Failure to comply with any of these requirements could result in serious damage to the equipment and the property in which it is situated, as well as severe personal injury or death to themselves and people at the site.

This document is intended for use by owner-authorized operating/service personnel. It is expected that this individual possesses independent training that will enable them to perform their assigned tasks properly and safely. It is essential that, prior to performing any task on this equipment, this individual shall have read and understood this document and any referenced materials. This individual shall also be familiar with and comply with all applicable governmental standards and regulations pertaining to the task in question.

SAFETY SYMBOLS

The following symbols are used in this document to alert the reader to areas of potential hazard:

DANGER indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

(CAUTION

CAUTION identifies a hazard which could lead to damage to the machine, damage to other equipment and/or environmental pollution. Usually an instruction will be given, together with a brief explanation.

WARNING indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

NOTE is used to highlight additional information which may be helpful to you.

External wiring, unless specified as an optional connection in the manufacturer's product line, is NOT to be connected inside the micro panel cabinet. Devices such as relays, switches, transducers and controls may NOT be installed inside the panel. NO external wiring is allowed to be run through the micro panel. All wiring must be in accordance with YORK's published specifications and must be performed ONLY by qualified YORK personnel. YORK will not be responsible for damages/problems resulting from improper connections to the controls or application of improper control signals. Failure to follow this will void the manufacturer's warranty and cause serious damage to property or injury to persons.

CHANGEABILITY OF THIS DOCUMENT

In complying with YORK's policy for continuous product improvement, the information contained in this document is subject to change without notice. While YORK makes no commitment to update or provide current information automatically to the manual owner, that information, if applicable, can be obtained by contacting the nearest YORK Engineered Systems Service office.

It is the responsibility of operating/service personnel to verify the applicability of these documents to the equipment in question. If there is any question in the mind of operating/service personnel as to the applicability of these documents, then prior to working on the equipment, they should verify with the owner whether the equipment has been modified and if current literature is available.

TABLE OF CONTENTS

SECTION 1 - GENERAL CHILLER INFORMATION & SAFETY

INTRODUCTION	7
WARRANTY	7
SAFETY	7
Standards for Safety	7
RESPONSIBILITY FOR SAFETY	8
ABOUT THIS MANUAL	
MISUSE OF EQUIPMENT	
Suitability for Application	
Structural Support	
Mechanical Strength	
General Access	8
Pressure Systems	9
Electrical	
Rotating Parts	9
Sharp Edges	
Refrigerant & Oils	
High Temperature & Pressure Cleaning	
Emergency Shutdown	

SECTION 2 - PRODUCT DESCRIPTION

INTRODUCTION	10
General System Description	10
Compressor	10
Cooler	10
Condenser	
Millenuim Control Center	11
Power Panel	
ACCESSORIES & OPTIONS	13
Power Options	13
Control Options	13
Compressor, Piping, Evaporator Options	
Condenser Cabinet Options	14
Sound Reduction Options	
UNIT COMPONENTS	16
CONTROL / POWER PANEL COMPONENTS	17
UNIT NOMENCLATURE	18
PRODUCT IDENTIFICATION NUMBER	18
REFRIGERANT FLOW DIAGRAM	23

SECTION 3 -HANDLING AND STORAGE

DELIVERY AND STORAGE	
INSPECTION	
MOVING THE CHILLER	
Lifting Weights	
UNIT RIGGING	

SECTION 4 - INSTALLATION

INSTALLATION CHECKLIST	
HANDLING	
INSPECTION	
LOCATION CLEARANCES	
Foundation	27
Ground Level Locations	27
Rooftop Locations	27
Noise Sensitive Locations	
SPRING ISOLATORS	27
COMPRESSOR MOUNTING	27
REMOTE COOLER OPTION	27
CHILLED LIQUID PIPING	27
General Requirements	27
DUCTWORK CONNECTION	
WIRING	
Evaporator Pump Start Contacts	29
System Run Contacts	29
Alarm Status	29
Remote Start/Stop Contacts	29
Remote Emergency Cutoff	29
PWM Input	29
Load Limit input	
Flow Switch Input	
COMPRESSOR HEATERS	
SINGLE POINT SUPPLY CONNECTION	
CONTROL WIRING	31

SECTION 5 - COMMISSIONING

COMMISSIONING	32
PREPARATION - POWER OFF	32
Inspection	32
Refrigerant Charge	
Service and Oil Line Valves	
Compressor Oil	32
Fans	
Isolator Protection	32
Control Panel	32
Power Connections	32
Grounding	32
Supply Voltage	32
PREPARATION - POWER ON	33
Switch Settings	33
Compressor Heaters	33
Water System	33
Flow Switch	33
Temperature Sensor(s)	33

TABLE OF CONTENTS (CONT'D)

EQUIPMENT START-UP CHECKLIST	34
Checking The System Prior To Initial Start-up	
(No Power)	34
Unit Checks	34
Compressor Heaters	
(Power On 24 Hrs. Prior To Start)	34
Panel Checks	
(Power On - Both Unit Switch Off)	34
SETPOINTS ENTRY LIST	35
CHECKING SUPERHEAT & SUBCOOLING	36
LEAK CHECKING	36
UNIT OPERATING SEQUENCE	37

SECTION 6 - TECHNICAL DATA

OPERATIONAL LIMITATIONS (ENGLISH)	38
Temperatures and Flows	38
Voltage Limitations	38
Ethylene Glycol Correction Factors	39
OPERATIONAL LIMITATIONS (SI)	40
Temperatures and Flows	40
Voltage Limitations	40
Ethylene Glycol Correction Factors	
PHYSICAL DATA (ENGLISH)	42
SOUND DATA (ENGLISH)	44
ELECTRICAL DATA	
ELECTRICAL NOTES	47
WIRING DIAGRAMS	48
DIMENSIONS	60
TECHNICAL DATA (CLEARANCES)	
ISOLATORS	

SECTION 7 - UNIT CONTROLS

INTRODUCTION	2
MICROPROCESSOR BOARD9	2
UNIT SWITCH9	3
DISPLAY9	3
KEYPAD9	3
BATTERY BACK-UP9	
TRANSFORMER STATUS9	
SINGLE SYSTEM SELECT PROGRAMMING #	
OF COMPRESSORS9	3
STATUS KEY9	4
UNIT STATUS9	4
GENERAL STATUS MESSAGE9	4
FAULT SAFETY STATUS MESSAGES9	6
System Safties9	6
Unit Safeties	8
UNIT WARNING9	8
STATUS KEY MESSAGES	
QUICK REFERENCE LIST9	9
DISPLAY/PRINT KEYS	

OPER DATA KEY	100
OPER DATA QUICK REFERENCE LIST	103
PRINT KEY	
OPERATING DATA PRINTOUT	104
HISTORY PRINTOUT	
HISTORY DISPLAYS	105
SOFTWARE VERSION	107
ENTRY KEYS	108
UP & DOWN ARROW KEYS	108
ENTER/ADV KEY	
SETPOINTS KEY	109
COOLING SETPOINTS	109
LEAVING CHILLED LIQUID CONTROL.	109
RETURN CHILLED LIQUID CONTROL	110
REMOTE SETPOINT CONTROL	110
SCHEDULE/ADVANCE DAY KEY	
PROGRAM KEY	
SYSTEM TRIP VOLTS	
UNIT TRIP VOLTS	114
PROGRAM KEY LIMITS AND DEFAULTS	114
SETPOINTS QUICK REFERENCE LIST	115
UNIT KEYS	116
OPTIONS KEY	116
CLOCK	119
UNIT KEYS PROGRAMMING	
QUICK REFERENCE LIST	120

SECTION 8 - UNIT OPERATION

CAPACITY CONTROL	.121
SUCTION PRESSURE LIMIT CONTROLS	.121
DISCHARGE PRESSURE LIMIT CONTROLS	.121
LEAVING CHILLED LIQUID CONTROL	.121
OVERRIDE TO REDUCE CYCLING	.122
LEAVING CHILLED LIQUID SYSTEM AND	
COMPRESSOR SEQUENCING	.122
RETURN LIQUID CONTROL	.122
ANTI-RECYCLE TIMER	.123
ANTI-COINCIDENCE TIMER	.123
EVAPORATOR PUMP CONTROL	.123
EVAPORATOR HEATER CONTROL	.123
PUMPDOWN CONTROL	.123
ELECTRONIC EXPANSION VALVE (EEV)	.123
MOP Feature	.123
Valve Preheat	.123
Inputs	.124
Outputs	
Program	.124
Safeties	
CONDENSER FAN CONTROL (STD)	.124

TABLE OF CONTENTS (CONT'D)

LOW AMBIENT CONTROL OPTION

0012 - 0021 UNITS	.126
General	126
Potentiometers Configuration	.125
Wiring	
PROGRAMMING	
LOW AMBIENT CONTROL OPTION	
0025 - 0032 UNITS	.129
General	129
Potentiometers Configuration	.130
Wiring	.130
PROGRAMMING	.130
LOAD LIMITING	.132
COMPRESSOR RUN STATUS	.132
ALARM STATUS	.132
EMS-PWM REMOTE TEMPERATURE RESET	.133
BAS/EMS TEMPERATURE RESET OPTION	.133

SECTION 9 -SERVICE AND TROUBLESHOOTING

CLEARING HISTORY BUFFERS	
SERVICE MODE	
SERVICE MODE - OUTPUTS	
SERVICE MODE -	
CHILLER CONFIGURATION	
SERVICE MODE - INPUTS	
CONTROL INPUTS/OUTPUTS	
MICROBOARD LAYOUT	
CHECKING INPUTS AND OUTPUTS	140
DIGITAL INPUTS	140

ANALOG INPUTS - TEMPERATURE	140
OUTSIDE AIR SENSOR	
LIQUID & REFRIGERANT SENSOR	
TEST POINTS	141
ANALOG INPUTS - PRESSURE	
DIGITAL OUTPUTS	
KEYPAD	
OPTIONAL PRINTER INSTALLATION	
Parts	
Assembly And Wiring	
Obtaining A Printout	
TROUBLESHOOTING	

SECTION 10 - MAINTENANCE

IMPORTANT	150
COMPRESSORS	150
Oil Level Check	150
Oil Analysis	150
CONDENSER FAN MOTORS	
CONDENSER COILS	150
OPERATING PARAMETERS	
ON-BOARD BATTERY BACK-UP	150
OVERALL UNIT INSPECTION	
ISN CONTROL	151
RECEIVED DATA (CONTROL DATA)	151
TRANSMITTED DATA	151
ISN CONTROL	151
RECEIVED DATA (CONTROL DATA)	
TRANSMITTED DATA	151
ISN OPERATIONAL & FAULT CODES	153
RECOMMENDED SPARE PARTS	154

GENERAL CHILLER INFORMATION & SAFETY

INTRODUCTION

YORK YCAL0012-0032 chillers are manufactured to the highest design and construction standards to ensure high performance, reliability and adaptability to all types of air conditioning installations.

The unit is intended for cooling water or glycol solutions and is not suitable for purposes other than those specified in this manual.

This manual contains all the information required for correct installation and commissioning of the unit, together with operating and maintenance instructions. The manuals should be read thoroughly before attempting to operate or service the unit.

All procedures detailed in the manuals, including installation, commissioning and maintenance tasks must only be performed by suitably trained and qualified personnel.

The manufacturer will not be liable for any injury or damage caused by incorrect installation, commissioning, operation or maintenance resulting from a failure to follow the procedures and instructions detailed in the manuals.

WARRANTY

YORK warrants all equipment and materials against defects in workmanship and materials for a period of eighteen months from date of shipment, unless labor or extended warranty has been purchased as part of the contract.

The warranty is limited to parts only replacement and shipping of any faulty part, or sub-assembly, which has failed due to poor quality or manufacturing errors. All claims must be supported by evidence that the failure has occurred within the warranty period, and that the unit has been operated within the designed parameters specified.

All warranty claims must specify the unit model, serial number, order number and run hours/starts. Model and serial number information is printed on the unit identification plate.

The unit warranty will be void if any modification to the unit is carried out without prior written approval from YORK. For warranty purposes, the following conditions must be satisfied:

- The initial start of the unit must be carried out by trained personnel from an Authorized YORK Service Center (see Commissioning Page 32).
- Only genuine YORK approved spare parts, oils, coolants, and refrigerants must be used.
- All the scheduled maintenance operations detailed in this manual must be performed at the specified times by suitably trained and qualified personnel (see Maintenance Section, Page 150).
- Failure to satisfy any of these conditions will automatically void the warranty (see Warranty Policy).

SAFETY

Standards for Safety

YCAL chillers are designed and built within an ISO 9002 accredited design and manufacturing organization. The chillers comply with the applicable sections of the following Standards and Codes:

- ANSI/ASHRAE Standard 15- Safety Code for Mechanical Refrigeration.
- ANSI/NFPA Standard 70- National Electrical Code (N.E.C.).
- ASME Boiler and Pressure Vessel Code- Section VIII Division 1.
- ARI Standard 550/590-98- Water Chilling Packages Using the Vapor Compression Cycle.
- ASHRAE 90.1- Energy Efficiency compliance.
- ARI 370- Sound Rating of Large Outdoor Refrigeration and Air Conditioning Equipment.

In addition, the chillers conform to Underwriters Laboratories (U.L.) for construction of chillers and provide U.L./cU.L. Listing Label.

RESPONSIBILITY FOR SAFETY

Every care has been taken in the design and manufacture of the unit to ensure compliance with the safety requirements listed above. However, the individual operating or working on any machinery is primarily responsible for:

- Personal safety, safety of other personnel, and the machinery.
- Correct utilization of the machinery in accordance with the procedures detailed in the manuals.

ABOUT THIS MANUAL

The following terms are used in this document to alert the reader to areas of potential hazard.

A *WARNING* is given in this document to identify a hazard, which could lead to personal injury. Usually an instruction will be given, together with a brief explanation and the possible result of ignoring the instruction.

A *CAUTION* identifies a hazard which could lead to damage to the machine, damage to other equipment and/or environmental pollution. Usually an instruction will be given, together with a brief explanation and the possible result of ignoring the instruction.

A *NOTE* is used to highlight additional information, which may be helpful to you but where there are no special safety implications.

The contents of this manual include suggested best working practices and procedures. These are issued for guidance only, and they do not take precedence over the above stated individual responsibility and/or local safety regulations.

This manual and any other document supplied with the unit are the property of YORK which reserves all rights. They may not be reproduced, in whole or in part, without prior written authorization from an authorized YORK representative.

MISUSE OF EQUIPMENT

Suitability for Application

The unit is intended for cooling water or glycol solutions and is not suitable for purposes other than those specified in these instructions. Any use of the equipment other than its intended use, or operation of the equipment contrary to the relevant procedures may result in injury to the operator, or damage to the equipment.

The unit must not be operated outside the design parameters specified in this manual.

Structural Support

Structural support of the unit must be provided as indicated in these instructions. Failure to provide proper support may result in injury to the operator, or damage to the equipment and/or building.

Mechanical Strength

The unit is not designed to withstand loads or stresses from adjacent equipment, pipework or structures. Additional components must not be mounted on the unit. Any such extraneous loads may cause structural failure and may result in injury to the operator, or damage to the equipment.

General Access

There are a number of areas and features, which may be a hazard and potentially cause injury when working on the unit unless suitable safety precautions are taken. It is important to ensure access to the unit is restricted to suitably qualified persons who are familiar with the potential hazards and precautions necessary for safe operation and maintenance of equipment containing high temperatures, pressures and voltages.

Pressure Systems

The unit contains refrigerant vapor and liquid under pressure, release of which can be a danger and cause injury. The user should ensure that care is taken during installation, operation and maintenance to avoid damage to the pressure system. No attempt should be made to gain access to the component parts of the pressure system other than by suitably trained and qualified personnel.

Electrical

The unit must be grounded. No installation or maintenance work should be attempted on the electrical equipment without first switching power OFF, isolating and locking-off the power supply. Servicing and maintenance on live equipment must only be performed by suitably trained and qualified personnel. No attempt should be made to gain access to the control panel or electrical enclosures during normal operation of the unit.

Rotating Parts

Fan guards must be fitted at all times and not removed unless the power supply has been isolated. If ductwork is to be fitted, requiring the wire fan guards to be removed, alternative safety measures must be taken to protect against the risk of injury from rotating fans.

Sharp Edges

The fins on the air-cooled condenser coils have sharp metal edges. Reasonable care should be taken when working in contact with the coils to avoid the risk of minor abrasions and lacerations. The use of gloves is recommended. Frame rails, brakes, and other components may also have sharp edges. Reasonable care should be taken when working in contact with any components to avoid risk of minor abrasions and lacerations.

Refrigerants and Oils

Refrigerants and oils used in the unit are generally nontoxic, non-flammable and non-corrosive, and pose no special safety hazards. Use of gloves and safety glasses is, however, recommended when working on the unit. The build up of refrigerant vapor, from a leak for example, does pose a risk of asphyxiation in confined or enclosed spaces and attention should be given to good ventilation.

High Temperature and Pressure Cleaning

High temperature and pressure cleaning methods (e.g. steam cleaning) should not be used on any part of the pressure system as this may cause operation of the pressure relief device(s). Detergents and solvents, which may cause corrosion, should also be avoided.

Emergency Shutdown

In case of emergency, the control panel is fitted with a Unit Switch to stop the unit in an emergency. When operated, it removes the low voltage 120 VAC electrical supply from the inverter system, thus shutting down the unit.

50091

PRODUCT DESCRIPTION

INTRODUCTION

YORK Millennium[®] Air-Cooled Scroll Chillers provide chilled water for all air conditioning applications using central station air handling or terminal units. They are completely self-contained and are designed for outdoor (roof or ground level) installation. Each unit includes hermetic scroll compressors, a liquid cooler, air cooled condenser, and a weather resistant microprocessor control center, all mounted on a pressed steel base.

The units are completely assembled with all interconnecting refrigerant piping and internal wiring, ready for field installation.

Prior to delivery, the unit is pressure-tested, evacuated, and fully charged with Refrigerant-22 (HCFC-22) and includes an initial oil charge. After assembly, a complete operational test is performed with water flowing through the cooler to assure that the refrigeration circuit operates correctly.

The unit structure is heavy-gauge, galvanized steel. This galvanized steel is coated with baked-on powder paint, which, when subjected to ASTM B117 1000 hour, salt spray testing, yields a minimum ASTM 1654 rating of "6". Corrosion resistant wire mesh panels are added to protect the condenser coil from incidental damage and restrict unauthorized access to internal components. Units are designed in accordance with NFPA 70 (National Electric Code), ASHRAE/ANSI 15 Safety code for mechanical refrigeration, ASME, Listed and labeled

with Intertek Testing Services (ETL) and rated in accordance with ARI Standard 550/590-2003.

All exposed power wiring is routed through liquid-tight, non-metallic conduit.

GENERAL SYSTEM DESCRIPTION

Compressors

The chiller has suction-gas cooled, hermetic, scroll compressors. The YCAL compressors incorporate a compliant scroll design in both the axial and radial direction. All rotating parts are statically and dynamically balanced. A large internal volume and oil reservoir provides greater liquid tolerance. Compressor crankcase heaters are also included for extra protection against liquid migration.

Cooler

The Brazed Plate Heat Exchanger is equipped with a heater controlled by the microprocessor. The heater provides freeze protection for the cooler down to -20° F (-29°C) ambient. The cooler is covered with 3/4" (19mm) flexible, closed-cell, foam insulation (K~0.25).

Brazed plate heat exchangers shall be UL (Underwriters Laboratories) listed. Installing contractor must include accommodations in the chilled water piping to allow proper drainage and venting of the heat exchanger. Water inlet and outlet connections are grooved for compatibility with factory supplied victaulic connections.

A strainer with a mesh size between .5 and 1.5 mm (40 mesh) is recommended upstream of the heat exchanger to prevent clogging.

Condenser

Coils – Fin and tube condenser coils of seamless, internally-enhanced, high-condensing-coefficient, corrosion resistant copper tubes are arranged in staggered rows, mechanically expanded into aluminum fins. Integral subcooling is included. The design working pressure of the coil is 450 PSIG (31 bar).

Low Sound Fans – The condenser fans are composed of corrosion resistant aluminum hub and glass-fiberreinforced composite blades molded into a low noise airfoil section. They are designed for maximum efficiency and are statically and dynamically balanced for vibration free operation. They are directly driven by independent motors, and positioned for vertical air discharge. All blades are statically and dynamically balanced for vibration-free operation. The fan guards are constructed of heavy-gauge, rust-resistant, PVC coated steel wire.

Motors – The fan motors are Totally Enclosed Air-Over, squirrel-cage type, current protected. They feature ball bearings that are double-sealed and permanently lubricated.

MILLENIUM CONTROL CENTER

All controls are contained in a NEMA 3R/12 (and equivalent to IP55*) cabinet with hinged outer door and includes:

Liquid Crystal Display with Light Emitting Diode backlighting for outdoor viewing:

- Two display lines
- Twenty characters per line

Color coded 12-button non-tactile keypad with sections for:

DISPLAY/PRINT of typical information:

- Chilled liquid temperatures
- Ambient temperature
- System pressures (each circuit)
- Operating hours and starts (each compressor)
- Print calls up to the liquid crystal display

- Operating data for the systems
- History of fault shutdown data for up to the last six fault shutdown conditions.
- An RS-232 port, in conjunction with this press-to-print button, is provided to permit the capability of hard copy print-outs via a separate printer (by others).

ENTRY section to:

ENTER setpoints or modify system values.

SETPOINTS: Updating can be performed to:

- Chilled liquid temperature setpoint and range
- Remote reset temperature range
- Set daily schedule/holiday for start/stop
- Manual override for servicing
- Low and high ambient cutouts
- Number of compressors
- Low liquid temperature cutout
- Low suction pressure cutout
- High discharge pressure cutout
- Anti-recycle timer (compressor start cycle time)
- Anti-coincident timer (delay compressor starts)

UNIT section to:

- Set time
- Set unit options

UNIT ON/OFF switch

The microprocessor control center is capable of displaying the following:

- Return and leaving liquid temperature
- Low leaving liquid temperature cutout setting
- Low ambient temperature cutout setting
- Outdoor air temperature
- English or Metric data
- Suction pressure cutout setting
- Each system suction pressure
- Discharge pressure (optional)
- Liquid Temperature Reset via a YORK ISN DDC or Building Automation System (by others) via:

- a pulse width modulated (PWM) input as standard.

- a 4-20 milliamp or 0 -10 VDC input, or contact closure with the optional B.A.S. interface option.
- Anti-recycle timer status for each system
- Anti-coincident system start timer condition
- Compressor run status
- No cooling load condition
- Day, date and time
- Daily start/stop times
- Holiday status
- Automatic or manual system lead/lag control
- Lead system definition
- Compressor starts & operating hours (each compressor)
- Status of hot gas valves, evaporator heater and fan operation
- Run permissive status
- Number of compressors running
- Liquid solenoid valve status
- Load & unload timer status
- Water pump status

Provisions are included for: pumpdown at shutdown; optional remote chilled water temperature reset and two steps of demand load limiting from an external building automation system. Unit alarm contacts are standard.

The operating program is stored in non-volatile memory (EPROM) to eliminate chiller failure due to AC powered failure/battery discharge. Programmed setpoints are retained in lithium battery-backed RTC memory for 5 years minimum.

POWER PANEL

Each panel contains:

- Compressor power terminals
- Compressor motor starting contactors per l.E.C.**
- Control power terminals to accept incoming for 115-1-60 control power
- Fan contactors & overload current protection

The power wiring is routed through liquid-tight conduit to the compressors and fans.

^{*} Intensity of Protection European Standard

^{**} International Electrotechnical Commission

ACCESSORIES AND OPTIONS

POWER OPTIONS:

COMPRESSOR POWER CONNECTION – Singlepoint (YCAL0012-0032) terminal block connection is provided as standard. The following power connections are available as options. (See electrical data for specific voltage and options availability) (**Factory-Mounted**).

SINGLE-POINT SUPPLY TERMINAL BLOCK – (standard on YCAL0012 - 0032 models) Includes enclosure, terminal-block and interconnecting wiring to the compressors. Separate external protection must be supplied, by others, in the incoming compressor-power wiring. (Do not include this option if either the Single-Point NonFused Disconnect Switch or Single-Point Circuit Breaker options have been included).

SINGLE-POINT NON-FUSED DISCONNECT SWITCH – Unit-mounted disconnect switch with external, lockable handle (in compliance with Article 440-14 of N.E.C.), can be supplied to isolate the unit power voltage for servicing. Separate external fusing must be supplied, by others in the power wiring, which must comply with the National Electrical Code and/or local codes.

SINGLE-POINT CIRCUIT BREAKER – A unit mounted circuit breaker with external, lockable handle (in compliance with N.E.C. Article 440-14), can be supplied to isolate the power voltage for servicing (this option includes the Single-Point Power connection).

CONTROL TRANSFORMER – Converts unit power voltage to 115-1-60 (0.5 or 1.0 KVA capacity). Factory mounting includes primary and secondary wiring between the transformer and the control panel (**Factory-Mounted**).

POWER FACTOR CORRECTION CAPACITORS – Will correct unit compressor power factors to a 0.90-0.95 (Factory-Mounted).

CONTROL OPTIONS:

AMBIENT KIT (LOW) – Units will operate to 25°F (-4°C). This accessory includes all necessary components to permit chiller operation to 0°F (-18°C). (This option includes the Discharge Pressure Transducer / Readout Capability option). For proper head pressure control in applications below 25°F (-4°C), where wind gusts may exceed five mph, it is recommended that Optional Condenser Louvered Enclosure Panels also be included (**Factory-Mounted**).

AMBIENT KIT (HIGH) – Required if units are to operate when the ambient temperature is above 115°F (46°C). Includes discharge pressure transducers. (This option includes the Discharge Pressure Transducer / Readout Capability option) (**Field-Mounted**).

BUILDING AUTOMATION SYSTEM INTER-FACE – The factory addition of a Printed Circuit Board to accept a 4-20 milliamp, 0-10VDC or contact closure input to reset the leaving chiller liquid temperature from a Building Automation System. (Only one of following options can be offered on a unit at a time: BAS, Remote Control Panel or Multi-unit Sequence Control) (Factory-Mounted). (The standard unit capabilities include remote startstop, remote water temperature reset via a PWM input signal or up to two steps of demand (load) limiting depending on model). (The standard control panel can be directly connected to a YORK Building Automated System via the standard onboard RS485 communication port).

LANGUAGE LCD AND KEYPAD DISPLAY – Spanish, French, and German unit LCD controls and keypad displays are available. Standard language is English.

DISCHARGE PRESSURE TRANSDUCERS AND READOUT CAPABILITY – The addition of pressure transducers allows models to sense and display discharge pressure. This is recommended for brine chilling applications. (This option is included with either the low or high ambient kits) (**Factory-Mounted**).

• Suction Pressure Transducers: Permits unit to sense and display suction pressure. This capability is standard.

MOTOR CURRENT MODULE – Capable of monitoring compressor motor current. Provides extra protection against compressor reverse rotation, phase-loss and phase imbalance. Option consists of one module per electrical system (**Factory-Mounted**).

OPTIVIEW REMOTE CONTROL PANEL - Graphical interface panel to remotely control and monitor up to 8 different units. (Refer to form 201.18-SG4 for detailed information).

MULTI-UNIT SEQUENCING – A separate Sequencing Control Center is provided to handle sequencing control of up to eight chillers in parallel based on mixed liquid temperature (interconnecting wiring by others). (Only one of following options can be offered on a unit at a time: BAS, Remote Control Panel or Multi-unit Sequence Control) (Factory-Mounted).

COMPRESSOR, PIPING, EVAPORATOR OP-TIONS:

LOW TEMPERATURE BRINE – Required for brine chilling below 30°F (-1°C) leaving brine temperature for YCAL0012 - 0065 models. Option includes resized thermal expansion valve (**Factory-Mounted**).

CHICAGO CODE RELIEF VALVES – Unit will be provided with relief valves to meet Chicago code requirements (**Factory-Mounted**).

SERVICE ISOLATION VALVE – Service suction and discharge (ball type) isolation valves are added to unit per system. This option also includes a system high pressure relief valve in compliance with ASHRAE 15 (**Factory-Mounted**).

HOT GAS BY-PASS – Permits continuous, stable operation at capacities below the minimum step of compressor unloading to as low as 5% capacity (depending on both the unit and operating conditions) by introducing an artificial load on the cooler. Hot gas by-pass is installed on only refrigerant system #1 on two-circuited units (**Factory-Mounted**).

DX COOLER 300 PSIG (21 bar) DWP WATERSIDE – The waterside will be of 300 PSIG (21 bar) instead of the standard 150 PSIG DWP. 300 PSIG R.F. flanges are included on the DX cooler nozzles (**Factory-Mounted**). The companion flanges will be field-supplied by others.

FLANGES (VICTAULIC TYPE) – Consists of two (2) Flange adapters for grooved end pipe (standard 150 psi [10.5 bar] cooler).

FLOW SWITCH – The flow switch or its equivalent must be furnished with each unit.

150 PSIG (10.5 bar) DWP–For standard units. Johnson Controls model F61MG-1C Vapor-proof SPDT, NEMA 4X switch (150 PSIG [10.5 bar] DWP), -20°F to 250°F (-29°C to 121°C), with 1" NPT connection for upright mounting in horizontal pipe (**Field-Mounted**).

300 psig (21 bar) DWP – For units with optional 300 PSIG (21 bar) DX cooler. McDonnell & Miller model FS74W Vapor-proof SPDT, NEMA 4X switch (300 PSIG (21 bar) DWP), -20°F to 300°F (-29°C to 149°C), with 1¹/₄ inch MPT connection for upright mounting in horizontal pipe (**Field-Mounted**).

DIFFERENTIAL PRESSURE SWITCH – Alternative to an above mentioned flow switch. Pretempco model DPS300AP40PF-82582-5 (300 psi max. working pressure), SPDT 5 amp 125/250VAC switch, Range 0 - 40 PSID, deadband 0.5 - 0.8 psi, with 1/4" NPTE Pressure Connections.

REMOTE DX COOLER – A split system arrangement with the cooler, leaving & return water sensors, liquid line solenoid valves, filter driers, sightglasses & TXVs shipped loose for field connection to the air-cooled condensing section. The DX cooler and outdoor section will have a nitrogen holding charge. Interconnecting rigid piping, wiring and refrigerant are by others. Includes YORK Service startup. See Form 150.62-NM1.1 (200) for other application information (this option includes the Crankcase Heater option) (**Field-Mounted**).

CONDENSER AND CABINET OPTIONS:

Condenser coil protection against corrosive environments is available by choosing any of the following options. For additional application recommendations, refer to FORM 150.12-ES1 (Factory-Mounted).

PRE-COATED FIN CONDENSER COILS – The unit's coils are constructed with black epoxy coated aluminum fins. This can provide corrosion resistance comparable to copper-fin coils in typical seashore locations. Either these or the post-coated coils (below), are recommended for units being installed at the seashore or where salt spray may hit the unit.

POST-COATED DIPPED CONDENSER COILS

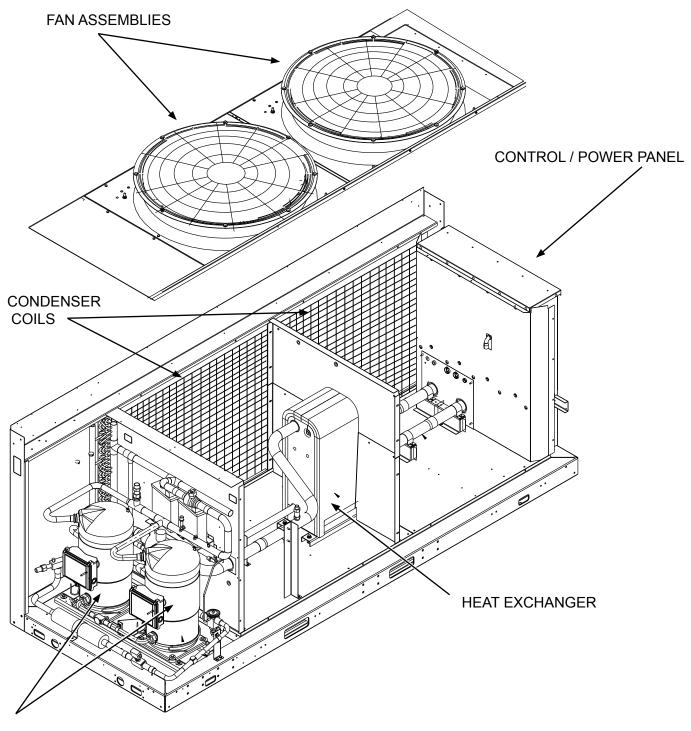
- The unit's coils are constructed with dipped-cured condenser coils. This is another choice for seashore and other corrosive applications (with the exception of strong alkalies, oxidizers and wet bromine, chlorine and fluorine in concentrations greater than 100 ppm).

COPPER FIN CONDENSER COILS – The unit's coils are constructed with copper fins. (This is not recommended for units in areas where they may be exposed to acid rain).

ENCLOSURE PANELS (UNIT) – Tamperproof Enclosure Panels prevent unauthorized access to units. Enclosure Panels can provide an aesthetically pleasing alternative to expensive fencing. Additionally, for proper head pressure control, YORK recommends the use of :

LOUVERED PANELS (Full Unit) – Louvered panels surround the front, back, and sides of the unit. They prevent unauthorized access and visually screen unit components. Unrestricted air flow is permitted through generously sized louvered openings. This option is applicable for any outdoor design ambient temperature up to 115°F (46°C) (**Factory-Mounted**).

SOUND REDUCTION OPTIONS:


SOUND ATTENUATION – One or both of the following sound attenuation options are recommended for residential or other similar sound-sensitive locations. Louvered Panels can be ordered for winter applications where wind gusts may exceed five miles per hour. The following types of enclosure options are available:

COMPRESSOR ACOUSTIC SOUND BLANKET – Each compressor is individually enclosed by an acoustic sound blanket. The sound blankets are made with one layer of acoustical absorbent textile fiber of 5/8" (15mm) thickness; one layer of anti-vibrating heavy material thickness of 1/8" (3mm). Both are closed by two sheets of welded PVC, reinforced for temperature and UV resistance (Factory-Mounted).

ULTRA QUIET FANS – Lower RPM, 8-pole fan motors are used with steeper-pitch fans (Factory-Mounted).

VIBRATION ISOLATORS – Level adjusting, spring type 1" (25.4mm) or seismic deflection or neoprene pad isolators for mounting under unit base rails (**Field-Mounted**).

UNIT COMPONENTS

COMPRESSORS

FIG. 1 – UNIT COMPONENTS

2

CONTROL / POWER PANEL COMPONENTS

PRODUCT IDENTIFICATION NUMBER (PIN)

BASIC UNIT NOMENCLATURE

YCA	\L <u>002</u>	1E	<u>C 46</u>	XBA
	# # # Even Number:			A : Engineering Change or PIN Level

FEATURE	DESCRIPTION	OPTION	DESCRIPTION
MODEL	Model (PIN 1-4)	YCAL	YCAL
		0012	0012
		0018	0018
		0021	0021
САР	Capacity (PIN 5-8)	0025	0025
0 / 11		0027	0027
		0032	0032
UNIT	Unit Designator (PIN 9)	E	High Efficiency
REF	Refrigerant (PIN 10)	С	R-22
		17	200/3/60
		28	230/3/60
VOLTS	Voltage (PIN 11 & 12)	40	380/3/60
		46	460/3/60
		58	575/3/60
STARTER	Starter (PIN 13)	X	Across The Line Starter
DESIGN	Design Series (PIN 14)	D	Design Series D
DEV	Developement Level (PIN 15)	A	Development Level A
		SX	Single Point Terminal Block
POWER	Power Field (PIN 16 & 17)	SD	Single Point Non-Fused Disconnect
		BX	Single Point Circuit Breaker
		QQ	Special Power Option Required

2

PRODUCT IDENTIFICATION NUMBER (PIN) (CON'T)

FEATURE	DESCRIPTION	OPTION	DESCRIPTION
		Х	No Control Transformer Required
TRANS Cntrl Transformer (PIN 18)	Т	Control Transformer Required	
		Q	Special Control Transformer Required
		Х	No Power Capacitor Required
PFC	Power Factor Capacitor (PIN 19)	С	Power Capacitor Required
		Q	Special Power Capacitor Required
		Х	No Ambient Kits Required
		L	Low Ambient Kits Required
AMB	Ambient Kits (PIN 20)	Н	High Ambient Kits Required
		A	High/Low Ambient Kits Required
		Q	Special Ambient Kits Required
		Х	No BAS Reset/Offset Required
BAS	BAS Reset/Offset (PIN 21)	М	ISN Microgateway Required
		Т	BAS Reset/Offset Required
		Q	Special BAS Reset/Offset Required
		Х	English
		S	Spanish
LCD	Language (PIN 22)	F	French
		G	German
		Q	Special Language Required
		Х	No Readout Kit Required
RDOUT	Readout Kits (PIN 23)	R	Discharge Readout Kit Required
	Q	Special Pressure Readout Required	
SAFETY	Safety Codes (PIN 24)	L	N American Safety Code(Cul/Cet)
SENSOR	Sensor (PIN 25)	Х	No Option Required
OLNOON		Q	Special Quote
		Х	No Motor Current
PUMP	Pump Control (PIN 26)	С	Motor Current Readout
		Q	Special Quote
		Х	No Remote Panel Required
REMOTE	Remote Panel (PIN 27)	0	OptiView Remote Panel Required
		Q	Special Remote Panel Required
SEQ	Sequence Kit (PIN 28)	Х	No Sequence Kit Required
		S	Sequence Kit Required= {SEQ/S}
		Q	Special Sequence Required
	Leaving Water Temp (PIN 29, 30)	NUM	Leaving Water Temp=
			{TEMP/NUM} Degrees
		QQ	Special LWT Requirements

PRODUCT IDENTIFICATION NUMBER (PIN) (CON'T)

FEATURE	DESCRIPTION	OPTION	DESCRIPTION
		X	No Chicago Code Kit Required
CHICAGO		С	Chicago Code Kit Required
	Chicago Code Kit (PIN 31)	S	Service Isolation Valves
		В	Both Chicago Code & Serv Isolation
		Q	Special Chicago Code Kit Required
VALVES	Valves (PIN 32)	X	Standard Valves Required
VALVES		Q	Special Optional Valves Required
		X	No Hot Gas Bypass Required
HGBP	Hot Gas Bypass (PIN 33)	1	Hot Gas Bypass Required-1 Circuit
		2	Hot Gas Bypass Required-2 Circuit
		Q	Special Hot Gas Required
GAUGE	Mech Gauge Kit (PIN 34)	X	No Option Required
GAUGE	Mech Gauge Kit (Fin 54)	Q	Special Quote
OVERLOAD	Overload (PIN 35)	X	No Option Required
OVEREDAD	Gvendad (Fili 55)	Q	Special Quote
PIN 36	(PIN 36)	X	No Option Required
FIN 50	(F114 50)	Q	Special Quote
HTR	Crankcase Heater (PIN 37)	X	Crankcase Heater Standard
	Chankease meater (Fill 57)	Q	Special Crankcase Heater Required
	DWP (PIN 38)	X	150 psig DWP Waterside
DWP		3	300 psig DWP Waterside
		Q	Special DWP
		X	Standard Insulation
INS	Insulation (PIN 39)	D	Double Thick Insulation
		Q	Special Insulation Required
		X	Standard Victaulic
FLANGES	Flanges (PIN 40)	V	Victaulic to Flange Adapter
		Q	Special Flanges Required
		X	No Flow Switch Required
		S	One Flow Switch Required
		Т	Two Flow Switches Required
		U	Three Flow Switches Required
FLOW	Flow Switch (PIN 41)	D	One Differential Pressure Switch Required
		E	Two Differential Pressure Switches Required
		F	Three Differential Pressure Switches Required
		Q	Special Flow Switch Required

2

FEATURE	DESCRIPTION	OPTION	DESCRIPTION
		X	UL Pressure Code Vessel
VESSEL Vessel Codes (P	Vessel Codes (PIN 42)	A	ASME Pressure Vessel Code
		Q	Special Pressure Vessel Code
		X	Standard Cooler Required
CLR	Cooler (PIN 43)	R	Remote Cooler Required
		Q	Special Cooler Required
PIN 44	(PIN 44)	X	No Option Required
FIN 44	(FIN 44)	Q	Special Quote
		X	Aluminum Coil
		В	Pre-Coated Fin Coil
COILS	Coils (PIN 45)	С	Copper Coil
		Р	Post-Coated Dipped Coil
		Q	Special Coil
PIN 46	(PIN 46)	Х	No Option Required
F IIN 40	(FIN 40)	Q	Special Quote
FANMOTORS	Fan Motors (PIN 47)	X	TEAO Fan Motors
TANNOTORS		Q	Special Fan Motors Required
		1	Wire Enclosures-Factory
ENCL	Enclosure Panel (PIN 48)	7	Louvered Enclosure-Factory
		8	Louvered Enclosures-Field
		Q	Special Encolsures Panels
		X	No Acoustic Blanket Required
ACOUSTIC	Acoustic Blanket (PIN 49)	В	Acoustic Blanket Required
		Q	Special Acoustic Blanket Required
PIN 50	(PIN 50)	X	No Option Required
1 114 00		Q	Special Quote
PIN 51	(PIN 51)	X	No Option Required
	(FIN 31)	Q	Special Quote
		Х	Standard Low Sound Fans Required
FANS	Sound Fans (PIN 52)	L	Ultra Low Sound Fans Required
		Q	Special Sound Fans Required
PAINT	(PIN 53)	Х	No Option Required
		Q	Special Quote
		Х	No Isolators Required
	Vibration Isolators (PIN 54)	1	1" Deflection Isolators Required
ISOL		Ν	Neoprene Isolators Required
		S	Seismic Isolators Required
		Q	Special Isolators Required

PRODUCT IDENTIFICATION NUMBER (PIN) (CON'T)

FEATURE	DESCRIPTION	OPTION	DESCRIPTION
	X	1st Year Parts Only	
		В	1st Year Parts & Labor
		С	2nd Year Parts Only
		D	2nd Parts & Labor
WARRANTY	Warranty (PIN 55)	E	5 Year Compressor Parts Only
		F	5 Year Compressor Parts & Labor
		G	5 Year Unit Parts Only
		Н	5 Year Unit Parts & labor
		Х	No Refrigerant Warranty Required
		1	1 Year Refrigerant
REFWTY	Refrigerant Warranty (PIN 56)	2	2 Year Refrigerant
		5	5 Year Refrigerant
		Х	No Option Required
		A	Buy American Act Compliance
SHIP	Ship Instructions (PIN 57)	В	Both Buy American Act Compliance and Container Shipping Kit
		С	Container Shipping
		Q	Special Quote
PIN 58	(PIN 58)	X	No Option Required
FIN JO	(FIN 56)	Q	Special Quote
		Х	No Pump Package Required
		A	Pump Package Kit "A"
		В	Pump Package Kit "B"
PKG	Bump Backage (BIN 50)	С	Pump Package Kit "C"
PKG	Pump Package (PIN 59)	D	Pump Package Kit "D"
		E	Pump Package Kit "E"
		F	Pump Package Kit "F"
		Q	Special Quote
		Х	No Option Required
		А	1-Pump
	Pump Package Options (PIN 60)	В	2-Pump
		С	1-Pump w/Expansion Tank
PKGOPT		D	2-Pump w/Expansion Tank
		E	1-Pump w/Buffer Tank
		F	2-Pump w/Buffer Tank
		G	1-Pump w/Expans Tank & Buffer Tank
		Н	2-Pump w/Expans Tank & Buffer Tank
		Q	Special Quote
MFG	Plant of Mfg. (PIN 61)	R	Plant of Manufacture-Monterrey
LOC	Mfg. Location	MEX	Mexico
		SAT	San Antonio
YW	YorkWorks Version	CV	YorkWorks ConVersion
		UV	YorkWorks Version
SQ	Special Quote	Q	Special Quote

REFRIGERANT FLOW DIAGRAM

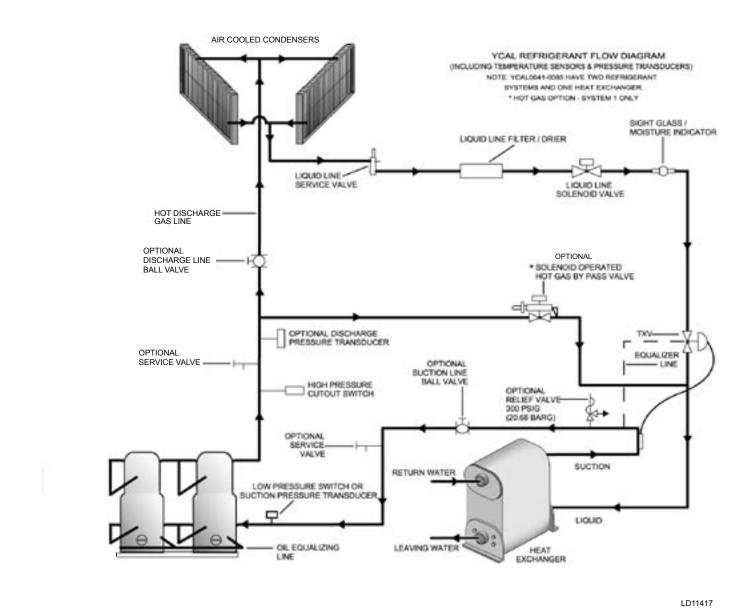


FIG. 3 - REFRIGERANT FLOW DIAGRAM

HANDLING AND STORAGE

DELIVERY AND STORAGE

To ensure consistent quality and maximum reliability, all units are tested and inspected before leaving the factory. Units are shipped completely assembled and containing refrigerant under pressure. Units are shipped without export crating unless crating has been specified on the Sales Order.

If the unit is to be put into storage, prior to installation, the following precautions should be observed:

- The chiller must be "blocked" so that the base is not permitted to sag or bow.
- Ensure that all openings, such as water connections, are securely capped.
- Do not store where exposed to ambient air temperatures exceeding 110°F (43°C).
- The condensers should be covered to protect the fins from potential damage and corrosion, particularly where building work is in progress.
- The unit should be stored in a location where there is minimal activity in order to limit the risk of accidental physical damage.
- To prevent inadvertent operation of the pressure relief devices the unit must not be steam cleaned.
- It is recommended that the unit is periodically inspected during storage.

INSPECTION

Remove any transit packing and inspect the unit to ensure that all components have been delivered and that no damage has occurred during transit. If any damage is evident, it should be noted on the carrier's freight bill and a claim entered in accordance with the instructions given on the advice note.

Major damage must be reported immediately to your local YORK representative.

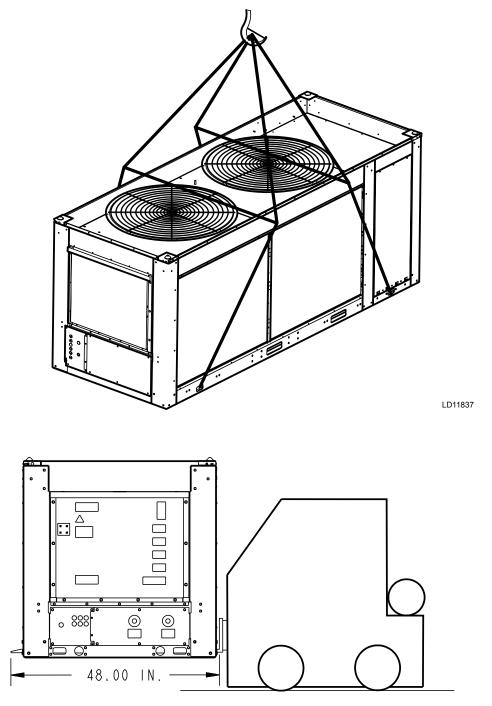
MOVING THE CHILLER

Prior to moving the unit, ensure that the installation site is suitable for installing the unit and is easily capable of supporting the weight of the unit and all associated services.

The units are designed to be lifted using cables.or an appropriate forklift. Refer to the unit dataplate for unit weight. When using lifting cables, a spreader bar or frame should be used in order to prevent damage to the unit from the lifting chains.

Units are provided with lifting eyes in the sides of the base frame, which can be attached to directly using shackles or safety hooks.

The unit must only be lifted by the base frame at the points provided.


Care should be taken to avoid damaging the condenser cooling fins when moving the unit.

Lifting Weights

For details of weights and weight distribution refer to the data shipped in the chiller information packet and unit nameplate.

3

Lifting Instructions are placed on a label on the chiller and on the shipping bag.

LD11838

Forks must extend beyond the width of the unit for proper lift. The thickness of the fork blade must be smaller then the opening of the lifting hole. Improper fork positioning could result in damage to the unit.

FIG. 4 - UNIT RIGGING/LIFTING

INSTALLATION

To ensure warranty coverage, this equipment must be commissioned and serviced by an authorized YORK service mechanic or a qualified service person experienced in chiller installation. Installation must comply with all applicable codes, particularly in regard to electrical wiring and other safety elements such as relief valves, HP cutout settings, design working pressures, and ventilation requirements consistent with the amount and type of refrigerant charge.

Lethal voltages exist within the control panels. Before servicing, open and tag all disconnect switches.

INSTALLATION CHECKLIST

The following items, 1 through 5, must be checked before placing the units in operation.

- 1. Inspect the unit for shipping damage.
- 2. Rig unit using spreader bars.
- 3. Open the unit only to install water piping system. Do not remove protective covers from water connections until piping is ready for attachment. Check water piping to ensure cleanliness.
- 4. Pipe unit using good piping practice (see ASHRAE handbook section 215 and 195).
- 5. Check to see that the unit is installed and operated within limitations (Refer to LIMITATIONS).

The following pages outline detailed procedures to be followed to install and start-up the chiller.

HANDLING

These units are shipped as completely assembled units containing full operating charge, and care should be taken to avoid damage due to rough handling.

INSPECTION

Immediately upon receiving the unit, it should be inspected for possible damage which may have occurred during transit. If damage is evident, it should be noted in the carrier's freight bill. A written request for inspection by the carrier's agent should be made at once. See "Instruction" manual, Form 50.15-NM for more information and details.

LOCATION AND CLEARANCES

These units are designed for outdoor installations on ground level, rooftop, or beside a building. Location should be selected for minimum sun exposure and to insure adequate supply of fresh air for the condenser. The units must be installed with sufficient clearances for air entrance to the condenser coil, for air discharge away from the condenser, and for servicing access.

In installations where winter operation is intended and snow accumulations are expected, additional height must be provided to ensure normal condenser air flow.

Clearances are shown in Fig. 16.

Foundation

The unit should be mounted on a flat and level foundation, floor, or rooftop capable of supporting the entire operating weight of the equipment. See PHYSICAL DATA for operating weight. If the unit is elevated beyond the normal reach of service personnel, a suitable catwalk must be capable of supporting service personnel, their equipment, and the compressors.

Ground Level Locations

It is important that the units be installed on a substantial base that will not settle. A one piece concrete slab with footers extended below the frost line is highly recommended. Additionally, the slab should not be tied to the main building foundations as noise and vibration may be transmitted. Mounting holes are provided in the steel channel for bolting the unit to its foundation (see DIMENSIONS).

For ground level installations, precautions should be taken to protect the unit from tampering by or injury to unauthorized persons. Screws and/or latches on access panels will prevent casual tampering. However, further safety precautions such as a fenced-in enclosure or locking devices on the panels may be advisable.

Rooftop Locations

Choose a spot with adequate structural strength to safely support the entire weight of the unit and service personnel. Care must be taken not to damage the roof.

Consult the building contractor or architect if the roof is bonded. Roof installations should have wooden beams (treated to reduce deterioration), cork, rubber, or vibration isolators under the base to minimize vibration.

Noise Sensitive Locations

Efforts should be made to assure that the chiller is not located next to occupied spaces or noise sensitive areas where chiller noise level would be a problem. Chiller noise is a result of compressor and fan operation. Considerations should be made utilizing noise levels published in the YORK Engineering Guide for the specific chiller model. Sound blankets for the compressors and low sound fans are available.

SPRING ISOLATORS (OPTIONAL)

When ordered, four (4) isolators will be furnished.

Identify the isolator, locate at the proper mounting point, and adjust per instructions.

COMPRESSOR MOUNTING

The compressors are mounted on four (4) rubber isolators. The mounting bolts should not be loosened or adjusted at installation of the chiller.

REMOTE COOLER OPTION

For units using remote cooler option, refer to instructions included with miscellaneous cooler parts kit.

The unit and remote cooler is shipped with a 6 lb. (2.7 kg) nitrogen holding charge. The nitrogen charge must be removed, and system evacuated, and the refrigerant charge must be weighed-in according to the operating charge listed under PHYSICAL DATA. Additional charge must also be added for the refrigerant lines.

CHILLED LIQUID PIPING

General – When the unit(s) has been located in its final position, the unit water piping may be connected. Normal installation precautions should be observed in order to receive maximum operating efficiencies. Piping should be kept free of all foreign matter. All chilled water evaporator piping must comply in all respects with local plumbing codes and ordinances.

Since elbows, tees and valves decrease pump capacity, all piping should be kept as straight and as simple as possible. All piping must be supported independent of the chiller.

Consideration should be given to compressor access when laying out water piping. Routing the water piping too close to the unit could make compressor servicing/replacement difficult.

Hand stop valves should be installed in all lines to facilitate servicing.

Piping to the inlet and outlet connections of the chiller should include high-pressure rubber hose or piping loops to ensure against transmission of water pump vibration. The necessary components must be obtained in the field. Drain connections should be provided at all low points to permit complete drainage of the cooler and system water piping.

A small valve or valves should be installed at the highest point or points in the chilled water piping to allow any trapped air to be purged. Vent and drain connections should be extended beyond the insulation to make them accessible.

The piping to and from the cooler must be designed to suit the individual installation. It is important that the following considerations be observed:

- 1. The chilled liquid piping system should be laid out so that the circulating pump discharges directly into the cooler. The suction for this pump should be taken from the piping system return line and not the cooler. This piping scheme is recommended, but is not mandatory.
- 2. The inlet and outlet cooler connection sizes are 2" (YCAL0012 0032).
- 3. A strainer, preferably 40 mesh, **must** be installed in the cooler inlet line just ahead of the cooler. This is important to protect the cooler from entrance of large particles which could cause damage to the evaporator.
- 4. All chilled liquid piping should be thoroughly flushed to free it from foreign material before the system is placed into operation. Use care not to flush any foreign material into or through the cooler.
- 5. As an aid to servicing, thermometers and pressure gauges should be installed in the inlet and outlet water lines.
- 6. The chilled water lines that are exposed to outdoor ambients should be wrapped with supplemental heater cable and insulated to protect against freezeup during low ambient periods, and to prevent formation of condensation on lines in warm humid locations.
- 7. A chilled water flow switch, (either by YORK or others) MUST be installed in the leaving water piping of the cooler. There should be a straight horizontal run of at least 5 diameters on each side of the switch. Adjust the flow switch paddle to the size of the pipe in which it is to be installed (see manufacturer's instructions furnished with the switch). The switch is to be wired to terminals 13 14 of CTB1 located in the control panel, as shown on the unit wiring diagram.

The Flow Switch MUST NOT be used to start and stop the chiller (i.e. starting and stopping the chilled water pump). It is intended only as a safety switch.

DUCT WORK CONNECTION

General Requirements

The following duct work recommendations are intended to ensure satisfactory operation of the unit. Failure to follow these recommendations could cause damage to the unit, or loss of performance, and may invalidate the warranty.

When ducting is to be fitted to the fan discharge it is recommended that the duct should be the same crosssectional area as the fan outlet and straight for at least three feet (1 meter) to obtain static regain from the fan. Duct work should be suspended with flexible hangers to prevent noise and vibration being transmitted to the structure. A flexible joint is also recommended between the duct attached to the fan and the next section for the same reason. Flexible connectors should not be allowed to concertina.

The unit(s) is not designed to take structural loading. No significant amount of weight should be allowed to rest on the fan outlet flange, deck assemblies or condenser coil module. No more than 3 feet (1 meter) of light construction duct work should be supported by the unit. Where cross winds may occur, any duct work must be supported to prevent side loading on the unit.

If the ducts from two or more fans are to be combined into a common duct, back-flow dampers should be fitted in the individual fan ducts. This will prevent re-circulation of air when only one of the fans is running.

Units are supplied with outlet guards for safety and to prevent damage to the fan blades. If these guards are removed to fit duct work, adequate alternative precautions must be taken to ensure persons cannot be harmed or put at risk from rotating fan blades.

WIRING

Liquid Chillers are shipped with all factory-mounted controls wired for operation.

Field Wiring – Power wiring must be provided through a fused disconnect switch to the unit terminals (or optional molded disconnect switch) in accordance with N.E.C. or local code requirements. Minimum circuit ampacity and maximum dual element fuse size are given in the the electrical data tables in this manual. A 120-1-60, 15 amp source must be supplied for the control panel through a fused disconnect when a control panel transformer (optional) is not provided (Refer to FIG. 5).

See unit wiring diagrams for field and power wiring connections, chilled water pump starter contacts, alarm contacts, compressor run status contacts, PWM input, and load limit input. Refer to section on UNIT OPERA-TION for a detailed description of operation concerning aforementioned contacts and inputs.

Evaporator Pump Start Contacts

Terminal block TB1 – terminals 23 to 24, are normallyopen contacts that can be used to switch field supplied power to provide a start signal to the evaporator pump contactor. The contacts will be closed when any of the following conditions occur:

- 1. Low Leaving Chilled Liquid Fault
- 2. Any compressor is running
- 3. Daily schedule is not programmed OFF and the Unit Switch is ON

The pump will not run if the micro panel has been powered up for less than 30 seconds, or if the pump has run in the last 30 seconds, to prevent pump motor overheating. Refer to FIG. 6 and unit wiring diagram.

System Run Contacts

Contacts are available to monitor system status. Normally-open auxiliary contacts from each compressor contactor are wired in parallel with TB1 – terminals 25 to 26 for system 1. Refer to FIG. 6 and unit wiring diagram.

Alarm Status Contacts

Normally-open contacts are available for each refrigerant system. These normally-open contacts close when the system is functioning normally. The respective contacts will open when the unit is shut down on a unit fault, or locked out on a system fault. Field connections are at TB1 terminals 29 to 30 (system 1).

Remote Start/Stop Contacts

To remotely start and stop the chiller, dry contacts can be wired in series with the flow switch and CTB1 - terminals 13 to 14. Refer to FIG. 6 and unit wiring diagram.

Remote Emergency Cutoff

Immediate shutdown of the chiller can be accomplished by opening a field-installed dry contact to break the electrical circuit between terminals 5 to L on terminal block TB1. The unit is shipped with a factory jumper installed between terminals 5 to L, which must be removed if emergency shutdown contacts are installed. Refer to FIG. 6 and unit wiring diagram.

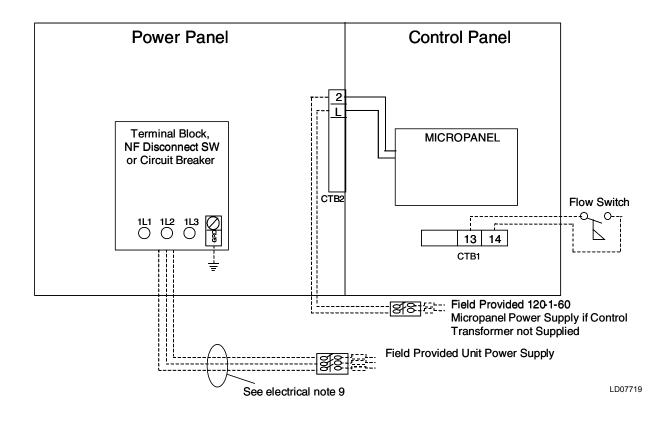
PWM Input

The PWM input allows reset of the chilled liquid setpoint by supplying a "timed" contact closure. Field wiring should be connected to CTB1 – terminals 13 to 20. A detailed explanation is provided in the Unit Control section.

Load Limit Input

Load limiting is a feature that prevents the unit from loading beyond a desired value. The unit can be "load limited" 50%. The field connections are wired to CTB1 – terminals 13 to 21, and work in conjunction with the PWM inputs. A detailed explanation is provided in the Unit Control section.

When using the Load Limit feature, the PWM feature will not function – SIMULTANEOUS OPERATION OF LOAD LIMITING AND TEM-PERATURE RESET (PWM INPUT) CANNOT BE DONE.


Flow Switch Input

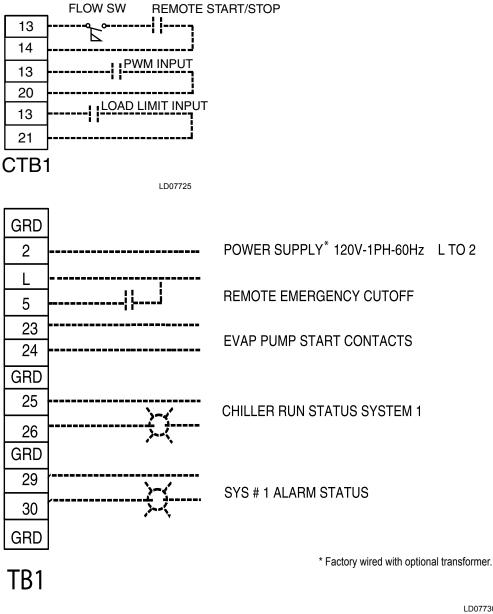
The flow switch is field wired to CTB1 terminals 13 - 14. See Page 17 and unit wiring diagram.

COMPRESSOR HEATERS

Compressor heaters are standard. If power is OFF more than two hours, the crankcase heaters must be energized for 18 - 24 hours prior to restarting a compressor. This will assure that liquid slugging and oil dilution does not damage the compressors on start.

SINGLE-POINT SUPPLY CONNECTION – TERMINAL BLOCK, NON-FUSED DISCONNECT SWITCH OR CIRCUIT BREAKER (0012 - 0032)

Electrical Notes and Legend located on page 47.


It is possible that multiple sources of power can be supplying the unit power panel. To prevent serious injury or death, the technician should verify that NO LETHAL VOLTAGES are present inside the panel AFTER disconnecting power, PRIOR to working on equipment.

The unit evaporator heater uses 120VAC. Disconnecting 120VAC power from the unit, at or below freezing temperatures, can result in damage to the evaporator and unit as a result of the chilled liquid freezing.

FIG. 5 – SINGLE-POINT SUPPLY CONNECTION – TERMINAL BLOCK, NON-FUSED DISCONNECT SWITCH OR CIRCUIT BREAKER (0012 - 0032)

CONTROL WIRING

LD07730a

It is possible that multiple sources of power can be supplying the unit power panel. To prevent serious injury or death, the technician should verify that NO LETHAL VOLTAGES are present inside the panel AFTER disconnecting power, PRIOR to working on equipment.

The unit evaporator heater uses 120VAC. Disconnecting 120VAC power from the unit, at or below freezing temperatures, can result in damage to the evaporator and unit as a result of the chilled liquid freezing.

FIG. 6 - CONTROL WIRING

COMMISSIONING

Commissioning of this unit should only be carried out by YORK Authorized personnel.

Commissioning personnel should be thoroughly familiar with the information contained in this literature, in addition to this section.

Perform the commissioning using the detailed checks outlined in the EQUIPMENT START-UP CHECK LIST (Page 34) as the commissioning procedure is carried out.

PREPARATION – POWER OFF

The following basic checks should be made with the customer power to the unit switched OFF.

Inspection

Inspect unit for installation damage. If found, take action and/or repair as appropriate.

Refrigerant Charge

Packaged units are normally shipped as standard with a full refrigerant operating charge. Check that refrigerant pressure is present in both systems and that no leaks are apparent. If no pressure is present, a leak test must be undertaken, the leak(s) located and repaired. Remote systems and units are supplied with a nitrogen holding charge. These systems must be evacuated with a suitable vacuum pump/recovery unit as appropriate to below 500 microns.

Do not liquid charge with static water in the cooler. Care must also be taken to liquid charge slowly to avoid excessive thermal stress at the charging point. Once the vacuum is broken, charge into the condenser coils with the full operating charge as given in the Technical Data Section.

Service and Oil Line Valves

Open each compressor suction, economizer, and discharge service valve. If valves are of the back-seat type, open them fully (counterclockwise) then close one turn of the stem to ensure operating pressure is fed to pressure transducers. Open the liquid line service valve and oil return line ball valve fully in each system.

Compressor Oil

To add oil to a circuit - connect a YORK hand oil pump (Part No. 470-10654-000) to the 1/4" oil charging valve on the oil separator piping with a length of clean hose or copper line, but do not tighten the flare nut. Using clean oil of the correct type ("L" oil), pump oil until all air has been purged from the hose then tighten the nut. Stroke the oil pump to add oil to the oil system. The oil level should be between the middle of the lower and middle of the upper sight glasses of the oil separator. Approximately 4-5 gallons is present in the each refrigerant system, with typically 1-2 gallons in each oil separator. Oil levels in the oil separators above the top sight glass in either oil separator should be avoided and may cause excessive oil carryover in the system. High oil concentration in the system may cause nuisance trips resulting from incorrect readings on the level sensor and temperature sensors. Temperature sensor errors may result in poor liquid control and resultant liquid overfeed and subsequent damage to the compressor.

Fans

Check that all fans are free to rotate and are not damaged. Ensure blades are at the same height when rotated. Ensure fan guards are securely fixed.

Isolation / Protection

Verify all sources of electrical supply to the unit are taken from a single point of isolation. Check that the maximum recommended fuse sizes given in the Technical Data Section has not been exceeded.

Control Panel

Check the panel to see that it is free of foreign materials (wire, metal chips, etc.) and clean out if required.

Power Connections

Check that the customer power cables are connected correctly to the terminal blocks or optional circuit breaker. Ensure that connections of power cables within the panels to the circuit breaker or terminal blocks are tight.

Grounding

Verify that the unit's protective ground terminal(s) are properly connected to a suitable grounding point. Ensure that all unit internal ground connections are tight.

Supply Voltage

Verify that the site voltage supply corresponds to the unit requirement and is within the limits given in the Technical Data Section.

PREPARATION – POWER ON

Perform the commissioning using the detailed checks outlined in the EQUIPMENT START-UP CHECK SHEET as the commissioning procedure is carried out.

Apply power to the chiller. Turn ON the option panel circuit breaker if supplied.

The machine is now live!

Switch Settings

Assure the chiller OFF/ON UNIT switch at the bottom of the keypad is OFF. Place the optional circuit breaker handle on the panel door to ON. The customer's disconnection devices can now be set to ON.

Verify the control panel display is illuminated. Assure the system switches under the SYSTEM SWITCHES Key are in the OFF position.

Compressor Heaters

Verify the compressor heaters are energized. If the ambient temperature is above 96°F (36°C) the compressor heaters must be on for at least 8 hours before start-up to ensure all refrigerant liquid is driven out of the compressor and the oil. If the ambient temperature is below 86°F (30°C), allow 24 hours.

Water System

Verify the chilled liquid system has been installed correctly, and has been commissioned with the correct direction of water flow through the cooler. The inlet should be at the refrigerant piping connection end of the cooler. Purge air from the top of the cooler using the plugged air vent mounted on the top of the cooler body.

Flow rates and pressure drops must be within the limits given in the Technical Data Section. Operation outside of these limits is undesirable and could cause damage. If mains power must be switched OFF for extended maintenance or an extended shutdown period, the compressor suction, discharge and economizer service stop valves should be closed (clockwise). If there is a possibility of liquid freezing due to low ambient temperatures, the coolers should be drained or power should be applied to the chiller. This will allow the cooler heater to protect the cooler from freezing down to -20° F. Before placing the unit back in service, valves should be opened and power must be switched on (if power is removed for more than 8 hours) for at least 8 hours (24 hours if ambient temperature is below 86°F [30°C]) before the unit is restarted.

Flow Switch

Verify a chilled water flow switch is correctly fitted in the customer's piping on the cooler outlet, and wired into the control panel correctly using shielded cable.

There should be a straight run of at least 5 pipe diameters on either side of the flow switch. The flow switch should be connected to terminals 2 and 13 in the panel.

Temperature Sensor(s)

Ensure the leaving liquid temperature sensor is coated with heat conductive compound (Part No. 013-00890-000) and is inserted to the bottom of the water outlet sensor well in the cooler. This sensor also provides some freeze protection and must always be fully inserted in the water outlet sensor well.

EQUIPMENT STARTUP CHECKLIST

JOB NAME:	
SALES ORDER #:	_
LOCATION:	
SOLD BY:	
INSTALLING	
CONTRACTOR:	

START-UP TECHNICIAN/

COMPANY: ____

START-UP DATE : _

CHILLER MODEL #: _____

SERIAL #: __

CHECKING THE SYSTEM PRIOR TO INITIAL START (NO POWER)

Unit Checks

- □ 1. Inspect the unit for shipping or installation damage.
- \Box 2. Assure that all piping has been completed.
- □ 3. Visually check for refrigerant piping leaks.
- □ 4. Open suction line ball valve, discharge line ball valve, and liquid line valve for each system.
- □ 5. The compressor oil level should be maintained so that an oil level is visible in the sight glass. The oil level can only be tested when the compressor is running in stabilized conditions, guaranteeing that there is no liquid refrigerant in the lower shell of the compressor. In this case, the oil should be between 1/4 and 3/4 in the sight glass. At shutdown, the oil level can fall to the bottom limit of the oil sight glass.
- □ 6. Assure water pumps are on. Check and adjust water pump flow rate and pressure drop across the cooler (see OPERATIONAL LIMITATIONS). Verify flow switch operation.

Excessive flow may cause catastrophic damage to the evaporator.

□7. Check the control panel to ensure it is free of foreign material (wires, metal chips, etc.).

- 8. Visually inspect wiring (power and control). Wiring MUST meet N.E.C. and local codes.
- □9. Check tightness of power wiring inside the power panel on both sides of the motor contactors and overloads.
- □10. Check for proper size fuses in main and control circuits, and verify overload setting corresponds with RLA and FLA values in electrical tables.
- □11. Assure 120VAC Control Power to TB1 has 15 amp minimum capacity.
- □ 12. Be certain all water temp sensors are inserted completely in their respective wells and are coated with heat conductive compound.
- □13. Assure that evaporator TXV bulbs are strapped onto the suction lines at 4 or 8 o'clock positions or suction temp. sensors if EEVs are installed.

COMPRESSOR HEATERS (POWER ON – 24 HOURS PRIOR TO START)

□1. Apply 120VAC and verify its value between terminals 5 and 2 of CTB2. The voltage should be 120VAC +/- 10%.

Power must be applied 24 hours prior to start-up.

Each heater should draw approximately 0.5-1A.

PANEL CHECKS (POWER ON – BOTH UNIT SWITCH OFF)

- □ 1. Apply 3-phase power and verify its value. Voltage imbalance should be no more than 2% of the average voltage.
- □ 2. Apply 120VAC and verify its value on the terminal block in the Power Panel. Make the measurement between terminals 5 and 2 of CTB2. The voltage should be 120VAC +/- 10%.
- 3. Program/verify the Cooling Setpoints, Program Setpoints, and unit Options. Record the values below (see sections on Setpoints and Unit Keys for programming instruction) in TABLE 1.
- □ 4. Put the unit into Service Mode (as described under

NOTE

5

TABLE 1 – SETPOINTS ENTRY LIST

OPTIONS	
Display Language	
Sys 1 Switch	
Chilled Liquid	
* Ambient Control	
Local/Remote Mode	
Control Mode	
Display Units	
* Lead/Lag Control	
* Fan Control	
Manual Override	
Current Feedback	
** Soft Start	
** Unit Type	
** Refrigerant Type	
** Expansion Valve Type	
COOLING SETPOINTS	
Cooling Setpoint	
Range	
EMS-PWM Max. Setpoint	
PROGRAM	
Discharge Pressure Cutout	
Suct. Pressure Cutout	
Low Amb. Temp. Cutout	
Leaving Liquid Temp. Cutout	
Anti-Recycle Time	
Fan Control On Pressure	
Fan Differential Off Pressure	
Total # of Compressors	
* Number of Fans/System	
* Unit/Sys Voltage	
Unit ID	
* Sys 1 Superheat Setpoint	

The chilled liquid setpoint may need to be temporarily lowered to ensure all compressors cycle "on."

)
NOTE)

This unit uses scroll compressors which can only operate in one direction. Failure to observe this will lead to compressor failure.

The chilled liquid setpoint may need to be temporarily lowered to ensure all compressors cycle "ON".

* NOT ON ALL MODELS

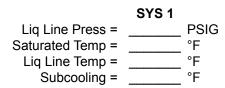
** VIEWABLE ONLY

the Control Service and Troubleshooting section) and cycle each condenser fan to ensure proper rotation.

5. Connect a manifold gauge to system 1 suction and discharge service valves.

> Place the Unit Switch in the control panel to the "ON" position. As each compressor cycles on, ensure that the discharge pressure rises and the suction pressure decreases. If this does not occur, the compressor being tested is operating in the reverse direction and must be corrected. After verifying proper compressor rotation, turn the Unit Switch to "OFF."

CHECKING SUPERHEAT AND SUBCOOLING


The subcooling temperature of each system can be calculated by recording the temperature of the liquid line at the outlet of the condenser and subtracting it from the liquid line saturation temperature at the liquid stop valve (liquid line saturation temp. is converted from a temperature/pressure chart).

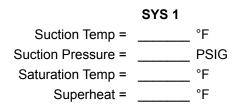
Example:

```
Liquid line pressure =
202 PSIG converted to temp. 102°F
minus liquid line temp. <u>- 87°F</u>
Subcooling = 15°F
```

The subcooling should be adjusted to 15°F at design conditions.

 Record the liquid line pressure and its corresponding temperature, liquid line temperature and subcooling below:

After the subcooling is verified, the suction superheat should be checked. The superheat should be checked only after steady state operation of the chiller has been established, the leaving water temperature has been pulled down to the required leaving water temperature, and the unit is running in a fully loaded condition. Correct superheat setting for a system is 10° F - 15° F (5.56°C - 8.33°C) 18" (46 cm) from the cooler.


Superheat should typically be set for no less than 10°F with only a single compressor running on a circuit. The superheat is calculated as the difference between the actual temperature of the returned refrigerant gas in the suction line entering the compressor and the temperature corresponding to the suction pressure as shown in a standard pressure/temperature chart. Example:

Suction Temp =	46°F
minus Suction Press	
60 PSIG converted to Temp	- <u>34°F</u>
Superheat =	12°F

When adjusting the expansion valve (TXV only), the adjusting screw should be turned not more than one turn at a time, allowing sufficient time (approximately 15 minutes) between adjustments for the system and the thermal expansion valve to respond and stabilize.

Assure that superheat is set at a minimum of 10°F (5.56°C) with a single compressor running on each circuit.

 Record the suction temperature, suction pressure, suction saturation temperature, and superheat of each system below:

LEAK CHECKING

□ 1. Leak check compressors, fittings, and piping to ensure no leaks.

If the unit is functioning satisfactorily during the initial operating period, no safeties trip and the compressors cycle to control water temperature to setpoint, the chiller is ready to be placed into operation.

UNIT OPERATING SEQUENCE

The operating sequence described below relates to operation on a hot water start after power has been applied, such as start-up commissioning. When a compressor starts, internal timers limit the minimum time before another compressor can start to 1 minute.

- 1. For the chiller system to run, the Flow Switch must be closed, any remote cycling contacts must be closed, the Daily Schedule must not be scheduling the chiller off, and temperature demand must be present.
- 2. When power is applied to the system, the microprocessor will start a 2 minute timer. This is the same timer that prevents an instantaneous start after a power failure.
- 3. At the end of the 2 minute timer, the microprocessor will check for cooling demand. If all conditions allow for start, a compressor on the lead system will start and the liquid line solenoid will open. Coincident with the start, the anti-coincident timer will be set and begin counting downward from "60" seconds to "0" seconds.

If the unit is programmed for Auto Lead/Lag, the system with the shortest average run-time of the compressors will be assigned as the "lead" system. A new lead/lag assignment is made whenever all systems shut down.

- Several seconds after the compressor starts, that systems first condenser fan will be cycled on (outdoor air temperature > 25°F (-4°C) or discharge pressure). See the section on Operating Controls for details concerning condenser fan cycling.
- 5. After 1 minute of compressor run time, the next compressor in sequence will start when a system has to load. Additional compressors will be started at 60 second intervals as needed to satisfy temperature setpoint.
- 6. If demand requires, the lag system will cycle on with the same timing sequences as the lead system after the lead system has run for five minutes. Refer to the section on Capacity Control for a detailed explanation of system and compressor staging.
- 7. As the load decreases below setpoint, the compressors will be shut down in sequence. This will occur at intervals of either 60, 30, or 20 seconds based on water temperature as compared to setpoint, and control mode. See the section on Capacity Control for a detailed explanation.
- 8. When the last compressor in a "system" (two or three compressors per system), is to be cycled off, the system will initiate a pump-down. Each "system" has a pump-down feature upon shut-off. On a non-safety, non-unit switch shutdown, the LLSV will be turned off, and the last compressor will be allowed to run until the suction pressure falls below the suction pressure cutout or for 180 seconds, whichever comes first.

5

OPERATIONAL LIMITATIONS (ENGLISH)

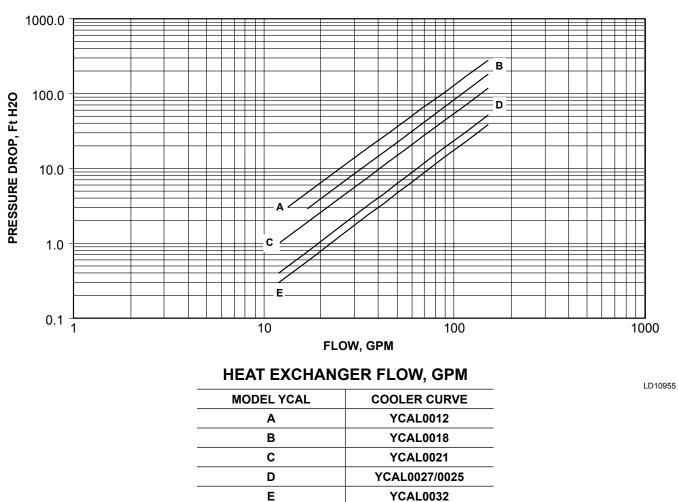
TABLE 2 - TEMPERATURES AND FLOWS

			ENGLISH				
YCAL		G WATER ATURE (°F)		CHANGER (GPM)	AIR ON CONDENSER (°F)		
	MIN	MAX	MIN	MAX	MIN	MAX	
0012	40	55	12	47	0	125	
0018	40	55	17	68	0	125	
0021	40	55	21	84	0	125	
0025	40	55	25	100	0	125	
0027	40	55	30	121	0	125	
0032	40	55	34	136	0	125	

VOLTAGE LIMITATIONS

The following voltage limitations are absolute and operation beyond these limitations may cause serious damage to the compressor.

Excessive flow will cause damage to the cooler. Do not exceed max. cooler flow. Special care should be taken when multiple chillers are fed by a single pump.


TABLE 3 - VO	DLTAGE LIMITATIONS
--------------	--------------------

UNIT POWER	MIN.	MAX.
200-3-60	180	220
230-3-60	207	253
380-3-60	355	415
460-3-60	414	506
575-3-60	517	633

NOTES:

- 1. For leaving brine temperature below 40°F (4.4°C), contact your nearest YORK Office for application requirements.
- 2. For leaving water temperature higher than 55°F (12.8°C), contact the nearest YORK Office for application guidelines.
- 3. The evaporator is protected against freezing to -20°F (-28.8°C) with an electric heater as standard.
- 4. For operation at temperatures below 25°F (-3.9°C), the optional Low Ambient Kit will need to be installed on the system.
- 5. For operation at temperatures above 115°F (46.1°C), the optional High Ambient Kit will need to be installed on the system.

OPERATIONAL LIMITATIONS (ENGLISH)

ENGLISH

Note: Water Pressure Drop Curves may extend past the minimum and maximum water flow ranges.

% WT ETHYLENE		FAC	FORS		FREEZE POINT
GLYCOL	TONS	COMPR. kW	DELTA P	GPM/°F/ TON	(°F)
10	.994	.997	1.03	24.1	26
20	.986	.993	1.06	24.9	16
30	.979	.990	1.09	25.9	5
40	.970	.985	1.13	27.3	-10
50	.959	.980	1.16	29.0	-32

TABLE 4 - ETHYLENE GLYCOL CORRECTION FACTORS

6

OPERATIONAL LIMITATIONS (SI)

TABLE 5 - TEMPERATURES AND FLOWS (SI)

			SI UNITS				
YCAL		G WATER TURE (°DC)		CHANGER V (L/S)	AIR ON CONDENSER (°C)		
	MIN	MAX	MIN	MAX	MIN	MAX	
0012	4.4	12.8	0.7	3.0	-17.7	51.7	
0018	4.4	12.8	1.1	4.3	-17.7	51.7	
0021	4.4	12.8	1.3	5.3	-17.7	51.7	
0025	4.4	12.8	1.6	6.3	-17.7	51.7	
0027	4.4	12.8	1.9	7.6	-17.7	51.7	
0032	4.4	12.8	2.2	8.6	-17.7	51.7	

VOLTAGE LIMITATIONS

The following voltage limitations are absolute and operation beyond these limitations may cause serious damage to the compressor.

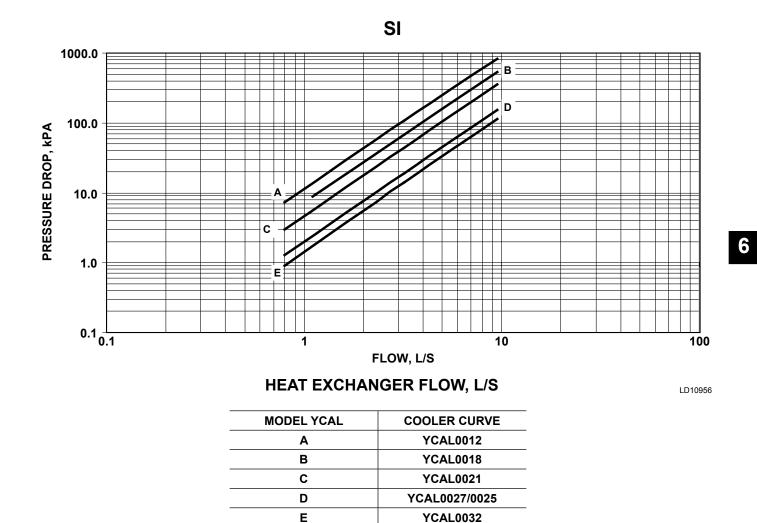
Excessive flow will cause damage to the cooler. Do not exceed max. cooler flow. Special care should be taken when multiple chillers are fed by a single pump.

TABLE 6 - VOLTAGE LIMITATIONS

UNIT POWER	MIN.	MAX.
200-3-60	180	220
230-3-60	207	253
380-3-60	355	415
460-3-60	414	506
575-3-60	517	633

NOTES:

1. For leaving brine temperature below 40°F (4.4°C), contact your nearest YORK Office for application requirements.


2. For leaving water temperature higher than 55°F (12.8°C), contact the nearest YORK Office for application guidelines.

3. The evaporator is protected against freezing to -20°F (-28.8°C) with an electric heater as standard.

4. For operation at temperatures below 25°F (-3.9°C), the optional Low Ambient Kit will need to be installed on the system.

5. For operation at temperatures above 115°F (46.1°C), the optional High Ambient Kit will need to be installed on the system.

OPERATIONAL LIMITATIONS (SI)

Note: Water Pressure Drop Curves may extend past the minimum and maximum water flow ranges.

% WT ETHYLENE		FAC	TORS		FREEZE POINT	
GLYCOL	TONS	COMPR. kW	DELTA P	GPM/°F/ TON	(°F)	
10	.994	.997	1.03	24.1	26	
20	.986	.993	1.06	24.9	16	
30	.979	.990	1.09	25.9	5	
40	.970	.985	1.13	27.3	-10	
50	.959	.980	1.16	29.0	-32	

TABLE 7 - ETHYLENE GLYCOL CORRECTION FACTORS

JOHNSON CONTROLS

PHYSICAL DATA (ENGLISH) YCAL0012_ - YCAL0032_

TABLE 8 - PHYSICAL DATA (ENGLISH)

60Hz

	D	imensio	n			General Unit	t Data (No	o Pump Me	odels)			Nomina	
Model		Nominal	Number of	Refrigerant	Oil	Shipping Weight *		Operating Weight *		Capacity			
10.	Length	Width	Height	Tons, R-22	Refrigerant Circuits	Unerating	Charge, gallons	Al Fin	Cu Fin Coils, Ibs	Al Fin Coils, Ibs	Cu Fin Coils, Ibs	Compr 1	Compr 2
0012	109.8	44.7	46.0	9.7	1	20	0.891	1361	1470	1385	1494	6	6
0018	109.8	44.7	46.0	14.5	1	25	1.719	1454	1597	1481	1624	8	8
0021	109.8	44.7	46.0	17.8	1	30	1.719	1567	1781	1597	1811	10	10
0025	118.6	44.7	50.0	21.7	1	40	2.188	1945	2151	1982	2188	13	13
0027	118.6	44.7	50.0	23.9	1	45	2.188	1977	2183	2014	2220	15	13
0032	118.6	44.7	50.0	28.0	1	50	2.188	2034	2240	2077	2283	15	15

	Condenser				Condenser Fans, Low Sound				Condenser Fans, Ultra Quiet			Heat Exchanger					
Model No.	Total Face Area, Sq/ft	No. of Rows	Fins per Inch		Fan Power hp/fan		Total Chiller CFM	No. of Fans	Fan Hp	Fan RPM	Total Chiller CFM	Water Volume, gallons	Max. Water Side Pres- sure, PSIG	Max. Refrige. Side Pressure, PSIG	Min. Chiller Water Flow Rate, gpm	Max. Chiller Water Flow Rate, gpm	Nominal Water Connec- tions Size, inches
0012	34.7	2	13	2	0.5	1100	13000	_	—	—	—	2.9	300	450	10	150	2
0018	34.7	2	17	2	0.5	1100	13000	_	—	—	—	3.3	300	450	10	150	2
0021	34.7	3	17	2	0.5	1100	13000	_	—	—	—	3.6	300	450	10	150	2
0025	43.5	3	17	2	1.5	1140	24000	2	2	838	24000	4.5	300	450	10	150	2
0027	43.5	3	17	2	1.5	1140	24000	2	2	838	24000	4.5	300	450	10	150	2
0032	43.5	3	17	2	1.5	1140	24000	2	2	838	24000	5.2	300	450	10	150	2

* Shipping & Operating weights shown are for units without pump options.

SOUND DATA (ENGLISH) YCAL0012_ - YCAL0032_

TABLE 9 – SOUND DATA (ENGLISH)

60Hz Line Frequency

LOW NOISE FAN (STANDARD)

	63	125	250	500	1000	2000	4000	8000	DBA
YCAL0012	80	81	80	80	78	73	69	65	82
YCAL0018	83	82	81	81	79	74	69	67	83
YCAL0021	84	83	82	82	79	75	70	68	84
YCAL0025	91	91	92	90	85	81	77	74	91
YCAL0027	91	91	92	90	85	81	77	74	91
YCAL0032	91	91	92	90	85	81	77	74	91

60Hz Line Frequency

LOW NOISE FA	OW NOISE FAN WITH COMPRESSOR SOUND BLANKETS												
	63	125	250	500	1000	2000	4000	8000	DBA				
YCAL0012	80	81	80	79	78	73	68	63	82				
YCAL0018	83	82	81	79	78	73	68	64	82				
YCAL0021	84	83	82	80	78	73	68	65	82				
YCAL0025	91	91	92	89	84	80	76	73	91				
YCAL0027	91	91	92	89	84	80	76	73	91				
YCAL0032	91	91	92	89	84	80	76	73	91				

60Hz Line Frequency

ULTRA QUIET F	ULTRA QUIET FAN (OPTIONAL)												
	63	125	250	500	1000	2000	4000	8000	DBA				
YCAL0025	93	90	88	87	84	80	76	74	89				
YCAL0027	93	90	88	87	84	80	76	74	89				
YCAL0032	93	90	88	87	84	80	76	74	89				

60Hz Line Frequency

ULTRA QUIET FAN WITH COMPRESSOR SOUND BLANKETS										
	63	125	250	500	1000	2000	4000	8000	DBA	
YCAL0025	93	90	88	86	82	78	74	73	88	
YCAL0027	93	90	88	86	82	78	74	73	88	
YCAL0032	93	90	88	86	82	78	74	73	88	

ELECTRICAL DATA (ENGLISH) YCAL0012 - 0032

SINGLE POINT FIELD SUPPLIED POWER WIRING (See Fig. 5) (One Field Provided Power Supply to the chiller. Field connections to Factory Provided Power Terminal Block (standard), Non-Fused Disconnect Switch (optional) or Circuit Breaker (optional)).

TABLE 10 - YCAL012 - ELECTRICAL DATA (ENGLISH)

	Lug/	Terminal-	Breaker	Circuit E	nent Fuse	Dual Elen	Min	Min Circuit	Volt/	Model
	Phase	Block Lug Wire Range	Max	Min	Мах	Min	Non Fused Disconnect	Ampacity (MCA)	60 Hz	
	1	#14-2/0	70	60	70	60	60	52	200	
	1	#14-2/0	60	76	60	60	60	48	230	
	1	#14-2/0	35	35	35	35	30	29	380	YCAL0012EC
	1	#14-2/0	30	83	30	30	30	24	460	
	1	#14-2/0	25	25	25	25	30	19	575	
	1	#14-2/0	110	100	110	100	100	85	200	
	1	#14-2/0	110	90	110	90	100	79	230	
	1	#14-2/0	60	60	60	60	60	46	380	YCAL0018EC
7	1	#14-2/0	60	45	60	45	60	38	460	
	1	#14-2/0	40	35	40	35	60	31	575	
	1	#14-2/0	125	110	125	110	100	94	200	
	1	#14-2/0	110	100	110	100	100	88	230	
	1	#14-2/0	70	60	70	60	60	51	380	YCAL0021EC
	1	#14-2/0	50	50	50	50	60	42	460	
	1	#14-2/0	45	40	45	40	60	34	575	
	1	#14-2/0	175	150	175	150	150	127	200	
	1	#14-2/0	150	150	150	150	150	119	230	
	1	#14-2/0	90	80	90	80	100	69	380	YCAL0025EC
	1	#14-2/0	70	70	70	70	60	58	460	
	1	#14-2/0	60	50	60	50	60	46	575	
	1	#14-2/0	175	150	175	150	150	133	200	
	1	#14-2/0	150	150	150	150	150	124	230	
	1	#14-2/0	100	80	100	80	100	72	380	YCAL0027EC
7	1	#14-2/0	80	70	80	70	100	60	460	
	1	#14-2/0	60	60	60	60	60	48	575	
	1	#14-2/0	175	175	175	175	150	137	200	
	1	#14-2/0	175	150	175	150	150	128	230	
\neg	1	#14-2/0	100	90	100	90	100	74	380	YCAL0032EC
\neg	1	#14-2/0	80	70	80	70	100	62	460	
	1	#14-2/0	60	60	60	60	60	49	575	

NOTE: Values shown in the table above are for models without optional pump package.

ELECTRICAL DATA YCAL0012 - 0032 (ENGLISH) (CON'T)

SINGLE POINT FIELD SUPPLIED POWER WIRING (See Fig. 5) (One Field Provided Power Supply to the chiller. Field connections to Factory Provided Power Terminal Block (standard), Non-Fused Disconnect Switch (optional) or Circuit Breaker (optional)).

								Compressors & Fans							
Disc. Switch Lug Wire Range	Lugs/ Phase	Circuit Breaker Lug Wire Range	Lugs/ Phase	Short Short Circuit Circuit Terminal NF Block Discon		Circuit NF Breaker		Compr. #1		Compr. #2		Fans (Std)		Fans (Low Noise)	
		0			Dictori		RLA	LRA	RLA	LRA	Fans	FLA	LRA	FLA	LRA
(1)#14-#2	1	(1)#14 <i>-</i> #2	1	5kA	5kA	5kA/65kA	20.4	150	20.4	150	2	2.6	5.0	—	_
(1)#14-#2	1	(1)#14 <i>-</i> #2	1	5kA	5kA	5kA/65kA	18.8	150	18.8	150	2	2.6	5.0	—	—
(1)#14-#2	1	(1)#14 <i>-</i> #2	1	5kA	5kA	5kA/65kA	10.9	91	10.9	91	2	1.6	3.0	—	—
(1)#14-#2	1	(1)#14 <i>-</i> #2	1	5kA	5kA	5kA/65kA	9.0	75	9.0	75	2	1.3	2.5	—	—
(1)#14-#2	1	(1)#14-#2	1	5kA	5kA	5kA/65kA	7.2	100	7.2	100	2	1.0	2.0	—	—
(1)#14 -#2	1	(1)#14 -#2	1	5kA	5kA	5kA/65kA	35.2	250	35.2	250	2	2.6	5.0	—	_
(1)#14-#2	1	(1)#14-#2	1	5kA	5kA	5kA/65kA	32.6	250	32.6	250	2	2.6	5.0	_	_
(1)#14 -#2	1	(1)#14 -#2	1	5kA	5kA	5kA/65kA	18.8	155	18.8	155	2	1.6	3.0	—	_
(1)#14 -#2	1	(1)#14 -#2	1	5kA	5kA	5kA/65kA	15.5	125	15.5	125	2	1.3	2.5	—	_
(1)#14-#2	1	(1)#14 -#2	1	5kA	5kA	5kA/65kA	12.4	100	12.4	100	2	1.0	2.0	—	_
(1)#14-#2	1	(1)#14 -#2	1	5kA	5kA	5kA/65kA	39.1	250	39.1	250	2	2.6	5.0	_	_
(1)#14-#2	1	(1)#14 -#2	1	5kA	5kA	5kA/65kA	36.2	250	36.2	250	2	1.6	5.0	_	_
(1)#14-#2	1	(1)#14 -#2	1	5kA	5kA	5kA/65kA	20.9	155	20.9	155	2	1.6	3.0	_	_
(1)#14-#2	1	(1)#14-#2	1	5kA	5kA	5kA/65kA	17.2	125	17.2	125	2	1.3	2.5	_	_
(1)#14-#2	1	(1)#14-#2	1	5kA	5kA	5kA/65kA	13.8	100	13.8	100	2	1.3	2.5	_	_
(1)#14 <i>-</i> #1/0	1	(1)#14 <i>-</i> #1/0	1	5kA	5kA	5kA/65kA	49.4	316	49.4	316	2	7.6	30.9	8.9	22.8
(1)#14 <i>-</i> #1/0	1	(1)#14 <i>-</i> #1/0	1	5kA	5kA	5kA/65kA	45.8	316	45.8	316	2	7.4	37.0	6.0	22.8
(1)#14-#2	1	(1)#14 -#2	1	5kA	5kA	5kA/65kA	26.4	199	26.4	199	2	4.5	22.3	4.5	12.7
(1)#14-#2	1	(1)#14 <i>-</i> #2	1	5kA	5kA	5kA/65kA	21.8	158	21.8	158	2	4.0	19.0	3.4	21.0
(1)#14-#2	1	(1)#14 -#2	1	5kA	5kA	5kA/65kA	17.4	126	17.4	126	2	2.9	14.6	3.0	8.3
(1)#14 <i>-</i> #1/0	1	(1)#14 <i>-</i> #1/0	1	5kA	5kA	5kA/65kA	49.4	316	49.4	316	2	7.6	30.9	8.9	22.8
(1)#14 <i>-</i> #1/0	1	(1)#14 <i>-</i> #1/0	1	5kA	5kA	5kA/65kA	45.8	316	45.8	316	2	7.4	37.0	6.9	22.8
(1)#14 <i>-</i> #1/0	1	(1)#14 <i>-</i> #1/0	1	5kA	5kA	5kA/65kA	26.4	199	26.4	199	2	4.5	22.3	4.5	12.7
(1)#14-#2	1	(1)#14 -#2	1	5kA	5kA	5kA/65kA	21.8	158	21.8	158	2	4.0	19.0	3.4	21.0
 (1)#14 -#2	1	(1)#14 -#2	1	5kA	5kA	5kA/65kA	17.4	126	17.4	126	2	2.9	14.6	3.0	8.3
(1)#14 <i>-</i> #1/0	1	(1)#14 <i>-</i> #1/0	1	5kA	5kA	5kA/65kA	53.8	425	49.4	316	2	7.6	30.9	8.9	22.8
(1)#14 <i>-</i> #1/0	1	(1)#14 <i>-</i> #1/0	1	5kA	5kA	5kA/65kA	49.8	425	45.8	316	2	7.4	37.0	6.9	22.8
(1)#14-#2	1	(1)#14 <i>-</i> #2	1	5kA	5kA	5kA/65kA	28.7	239	26.4	199	2	4.5	22.3	4.5	12.7
(1)#14-#2	1	(1)#14 <i>-</i> #2	1	5kA	5kA	5kA/65kA	23.7	198	21.8	158	2	4.0	19.0	3.4	21.0
(1)#14-#2	1	(1)#14 <i>-</i> #2	1	5kA	5kA	5kA/65kA	19.0	148	17.4	126	2	2.9	14.6	3.0	8.3

ELECTRICAL DATA

TABLE 16 - MICRO PANEL POWER SUPPLY

UNIT VOLTAGE	CONTROL POWER		MCA NOTE A	OVER CURRE SEE	NF DISC Sw	
MODELS w/o	UNIT VOLTAGE		NOTEA	MIN	MAX	
CONTROL TRANS	VOLIAGE	115-1-60/50	15A	10A	15A	30 A / 240V
	-17	200-1-60	15A	10A	15A	30 A / 240V
	-28	230-1-60	15A	10A	15A	30 A / 240V
MODELS w/	-40	380-1-60	15A	10A	15A	30 A / 480V
CONTROL TRANS	-46	460-1-60	15A	10A	15A	30 A / 480V
	-50	380/415-1-60	15A	10A	15A	30A / 415V
	-58	575-1-60	15A	10A	15A	30 A / 600V

A. Minimum #14 AWG, 75°C, Copper Recommended

B. Minimum and Maximum Over Current Protection, Dual Element Fuse or Circuit Breaker

It is possible that multiple sources of power can be supplying the unit power panel. To prevent serious injury or death, the technician should verify that NO LETHAL VOLTAGES are present inside the panel AFTER disconnecting power, PRIOR to working on equipment.

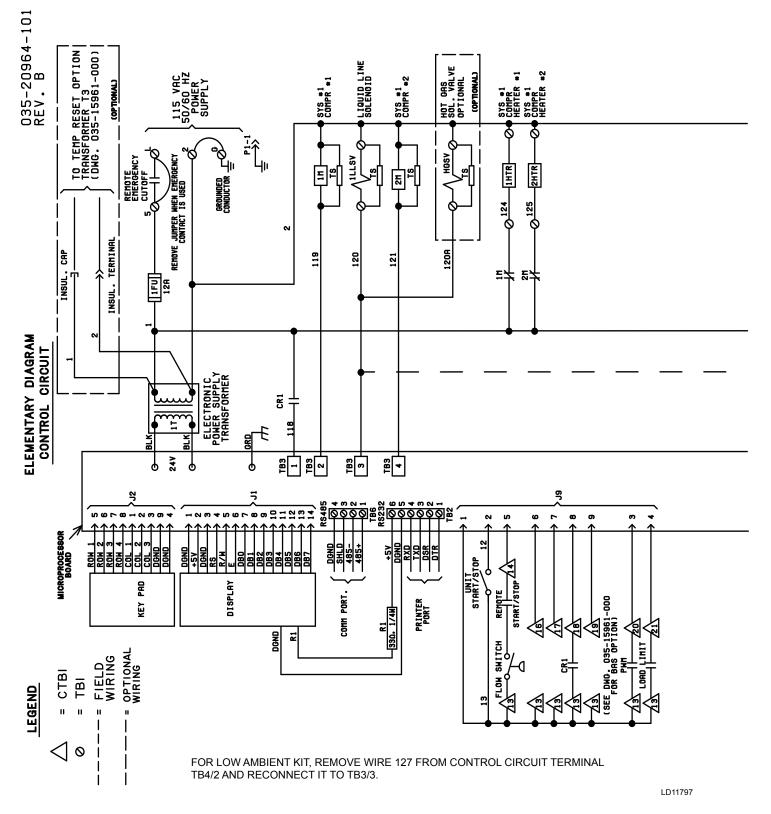
The unit evaporator heater uses 120VAC. Disconnecting 120VAC power from the unit, at or below freezing temperatures, can result in damage to the evaporator and unit as a result of the chilled liquid freezing.

TABLE 17 - VOLTAGE RANGE

VOLTAGE RANGE									
VOLTAGE CODE	UNIT POWER	MIN.	MAX.						
-17	200-3-60	180	220						
-28	230-3-60	207	253						
-40	380/415-3-60	342	440						
-46	460-3-60	414	506						
-50	380/415-3-50	342	440						
-58	575-3-60	517	633						

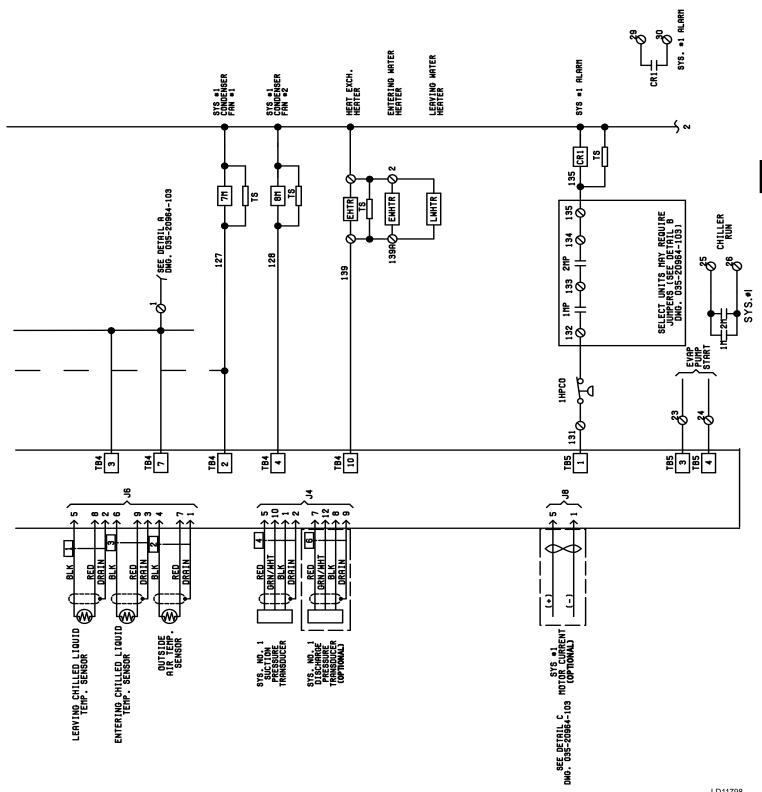
ELECTRICAL NOTES AND LEGEND

NOTES:


- 1. Minimum Circuit Ampacity (MCA) is based on 125% of the rated load amps for the largest motor plus 100% of the rated load amps for all other loads included in the circuit, per N.E.C. Article 430-24. If the optional Factory Mounted Control Transformer is provided, add the following MCA values to the electrical tables for the system providing power to the transformer: -17, add 2.5 amps; -28, add 2.3 amps; -40, add 1.5 amps, -46, add 1.3 amps; -58, add 1 amps.
- 2. The minimum recommended disconnect switch is based on 115% of the rated load amps for all loads included in the circuit, per N.E.C. Article 440.
- 3. Minimum fuse size is based upon 150% of the rated load amps for the largest motor plus 100% of the rated load amps for all other loads included in the circuit to avoid nuisance trips at start-up due to lock rotor amps. It is not recommended in applications where brown outs, frequent starting and stopping of the unit, and/or operation at ambient temperatures in excess of 95°F (35°C) is anticipated.
- 4. Maximum fuse size is based upon 225% of the rated load amps for the largest motor plus 100% of the rated load amps for all other loads included in the circuit, per N.E.C. Article 440-22.
- 5. Circuit breakers must be UL listed and CSA certified and maximum size is based on 225% of the rated load amps for the largest motor plus 100% of the rated load amps for all other loads included in the circuit. Otherwise, an HACR-type circuit breakers must be used. Maximum HACR circuit breaker rating is based on 225% of the rated load amps for the largest motor plus 100% of the rated load amps for all other loads included in the circuit.
- 6. The "INCOMING WIRE RANGE" is the minimum and maximum wire size that can be accommodated by the unit wiring lugs. The (2) preceding the wire range indicates the number of termination points available per phase of the wire range specified. Actual wire size and number of wires per phase must be determined based on the National Electrical Code, **using copper connectors only**. Field wiring must also comply with local codes.
- 7. A ground lug is provided for each compressor system to accommodate a field grounding conductor per N.E.C. Table 250-95. A control circuit grounding lug is also supplied.
- 8. The supplied disconnect is a "Disconnecting Means" as defined in the N.E.C. 100, and is intended for isolating the unit for the available power supply to perform maintenance and troubleshooting. This disconnect is not intended to be a Load Break Device.
- 9. Field Wiring by others which complies to the National Electrical Code & Local Codes.

LEGEND:

ACR-LINE	ACROSS THE LINE START	VOLTAGE CODE
C.B.	CIRCUIT BREAKER	-17 = 200-3-60
D.E.	DUAL ELEMENT FUSE	-28 = 230-3-60
DISC SW	DISCONNECT SWITCH	-40 = 380-3-60
FACT MOUNT CB	FACTORY MOUNTED CIRCUIT BREAKER	-46 = 460-3-60
FLA	FULL LOAD AMPS	-58 = 575-3-60
HZ	HERTZ	
MAX	MAXIMUM	
MCA	MINIMUM CIRCUIT AMPACITY	
MIN	MINIMUM	LEGEND:
MIN NF	MINIMUM NON FUSED	Field Wiring
RLA	RATED LOAD AMPS	0
S.P. WIRE	SINGLE POINT WIRING	Factory Wiring
UNIT MTD SERV SW	UNIT MOUNTED SERVICE (NON-FUSED	
	DISCONNECT SWITCH)	
LRA	LOCKED ROTOR AMPS	

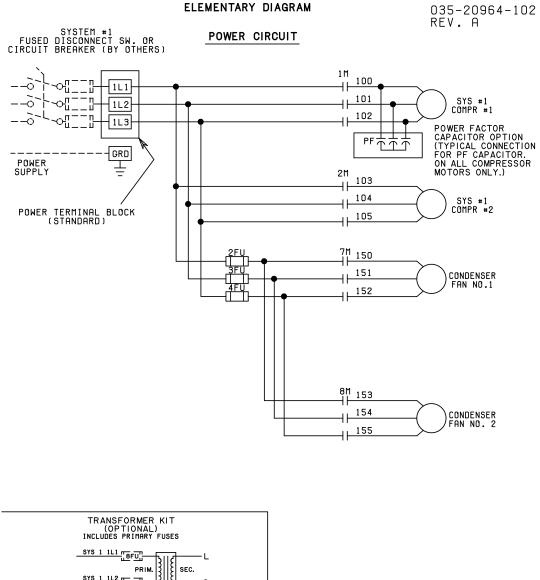

ELEMENTARY DIAGRAM

STANDARD UNITS (0012 - 0032) LOW SOUND (0025 - 0032 460V)

6

ELEMENTARY DIAGRAM (CON'T)

ELEMENTARY DIAGRAM


STANDARD UNITS (0012 - 0021)

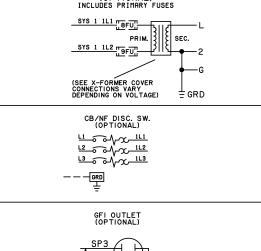


FIG. 8 - POWER CIRCUIT

ELEMENTARY DIAGRAM

STANDARD UNITS (0025 - 0032, LOW SOUND 0025 - 0032 460V))

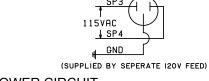
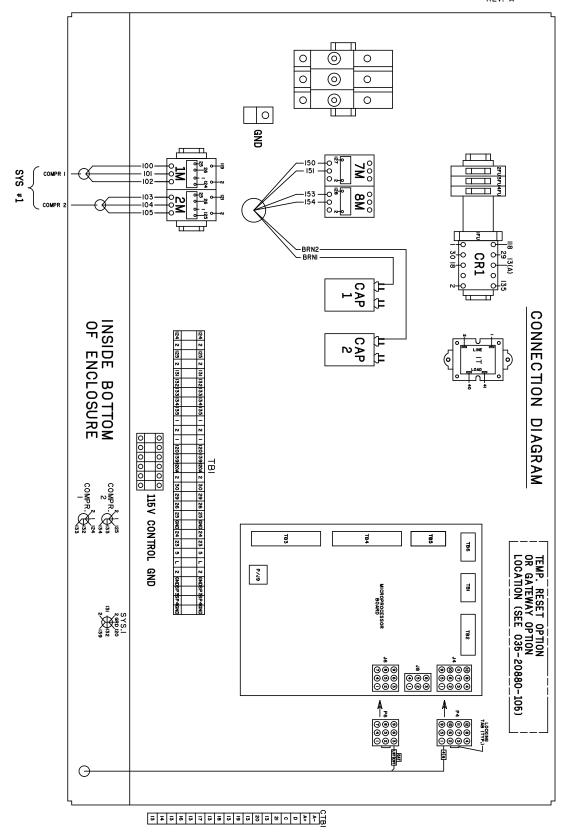


FIG. 9 - POWER CIRCUIT

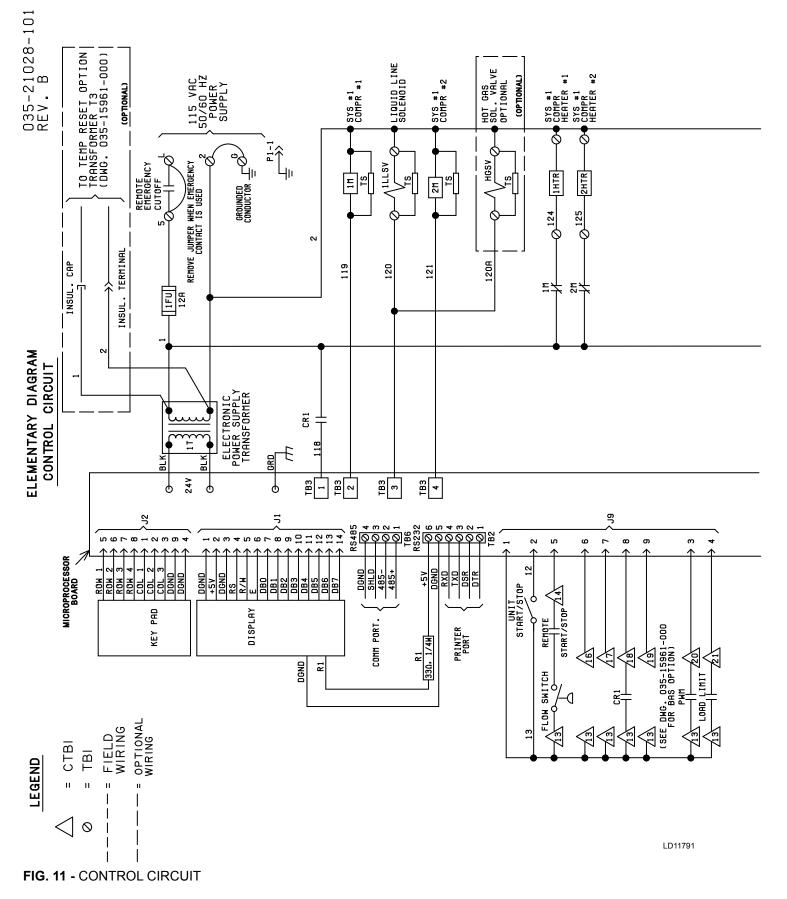

JOHNSON CONTROLS

THIS PAGE INTENTIONALLY BLANK

CONNECTION DIAGRAM

STANDARD UNITS (0012 - 0021)

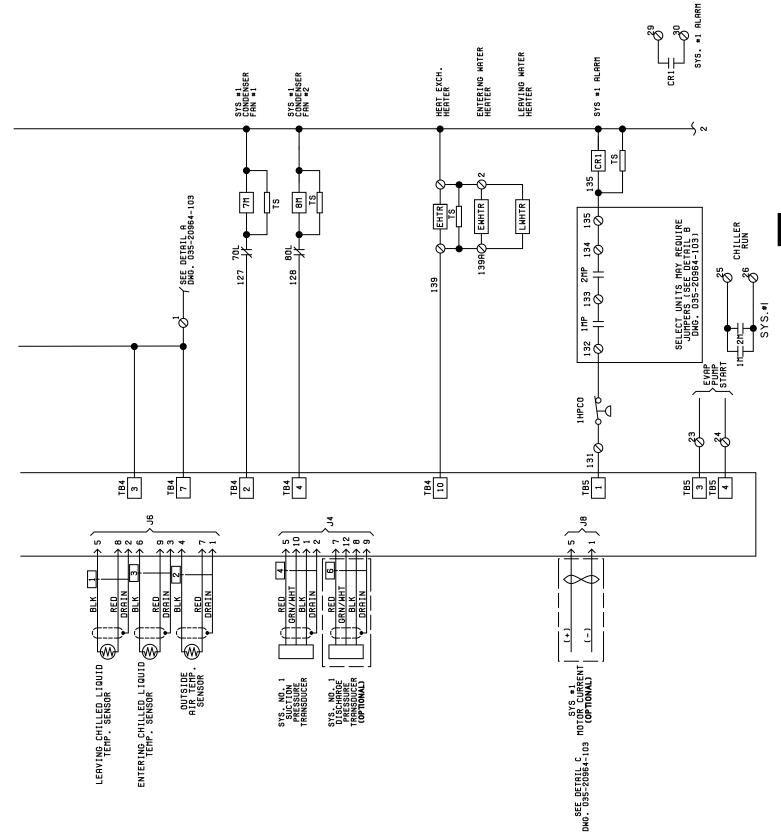
035-21031-104 REV. A



LD11800

6

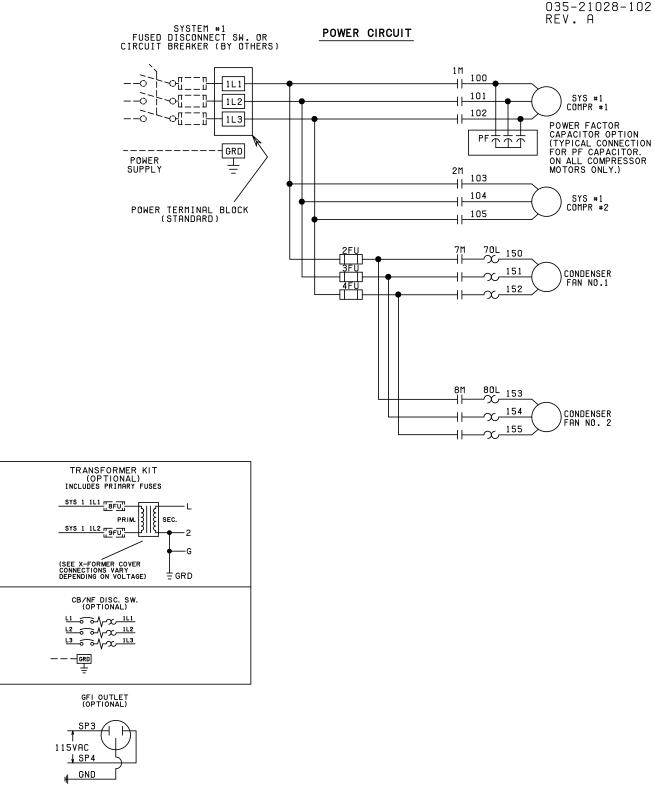
ELEMENTARY DIAGRAM


LOW SOUND UNITS (0025 - 0032) (Except 460V)

FORM 150.66-NM2 (906)

6

ELEMENTARY DIAGRAM (CON'T)



LD11792

FIG. 11 (CON'T) - CONTROL CIRCUIT - LOW SOUND UNITS

CONNECTION DIAGRAM

LOW SOUND UNITS (0025 - 0032) (Except 460V)

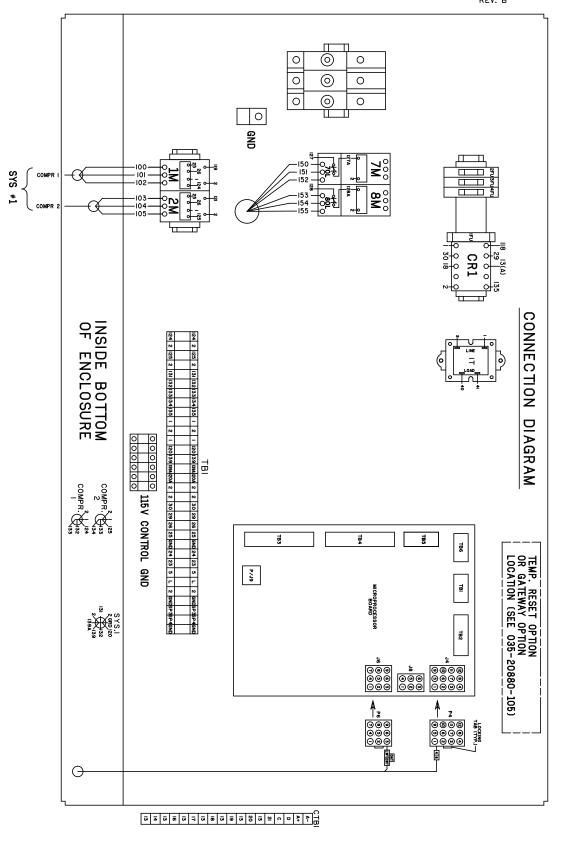
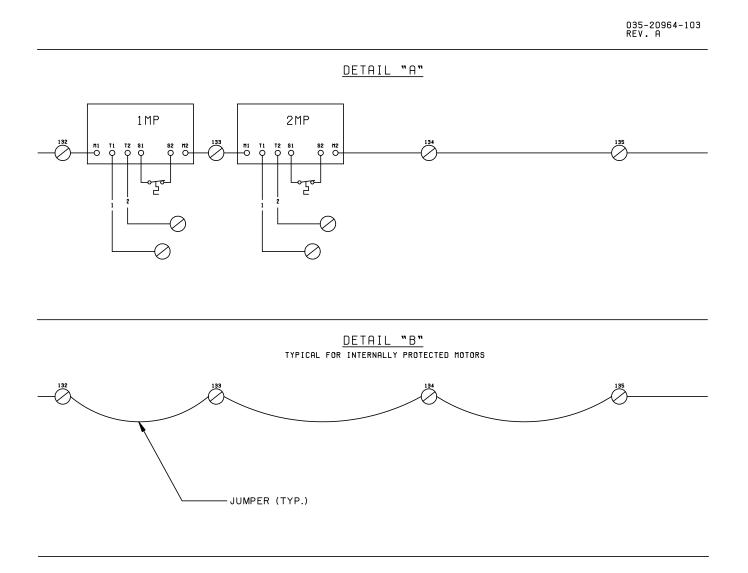
(SUPPLIED BY SEPERATE 120V FEED)

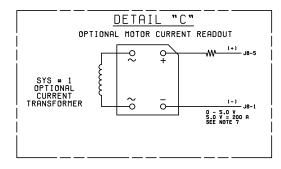
FIG. 12- POWER CIRCUIT

CONNECTION DIAGRAM

LOW SOUND UNITS (0025 - 0032) (Except 460V)

035-21028-104 REV. B


FIG. 13 - CONNECTION DIAGRAM - LOW SOUND UNITS

ELEMENTARY DIAGRAM - DETAILS

ALL MODELS

YCAL STANDARD AND REMOTE EVAPORATOR UNITS

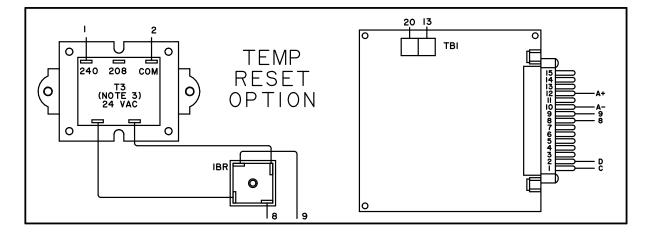

LD11793

FIG. 14 - ELEMENTARY DIAGRAM DETAILS- ALL MODELS UNIT

CONNECTION DIAGRAM

ALL MODELS

035-20880-105 REV. B

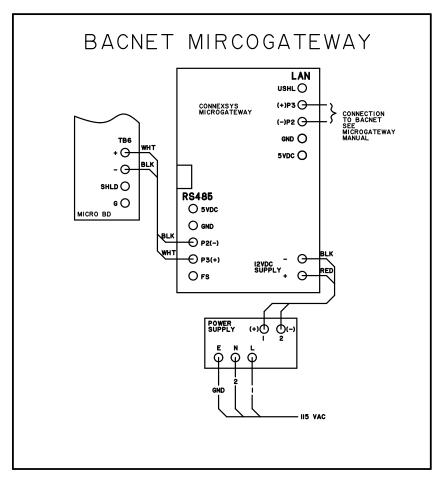
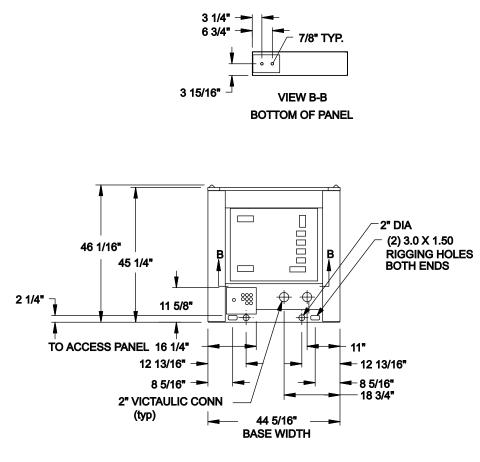
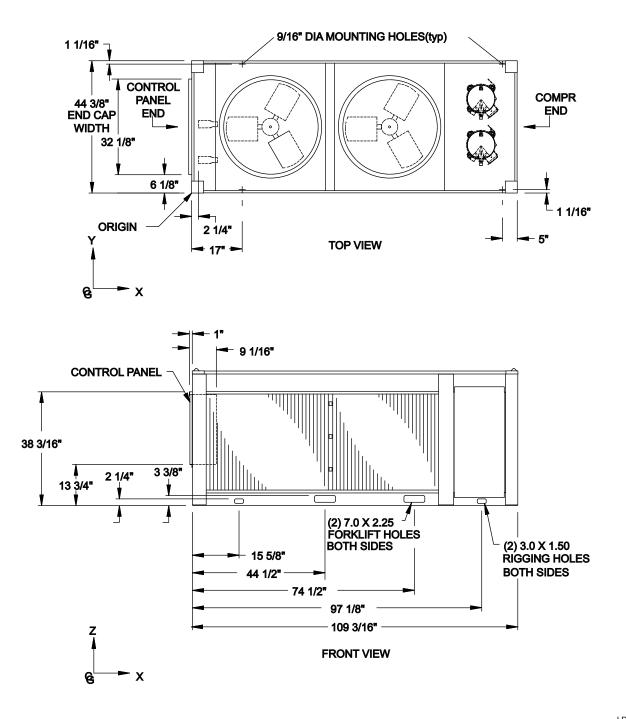



FIG. 15 - CONNECTION DIAGRAM - STANDARD UNIT

DIMENSIONS - YCAL0012 (ENGLISH)

LEFT END


POWER: SINGLE POINT SUPPLY WITH TERMINAL BLOCK

LD11811

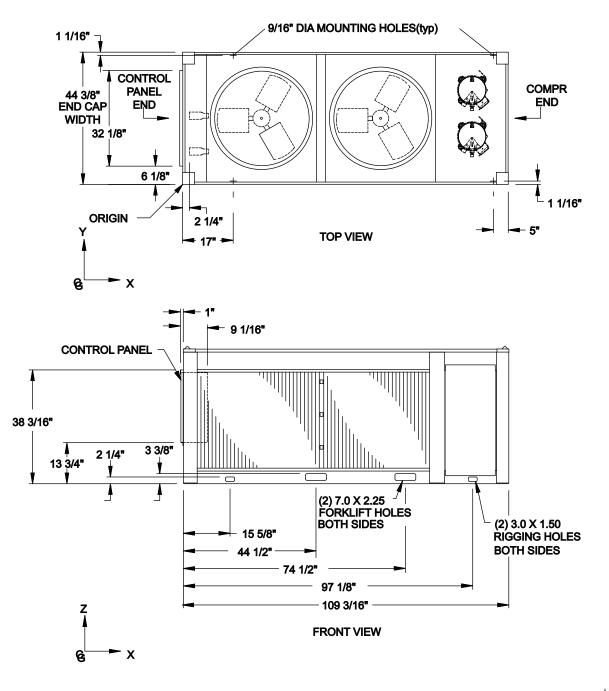
NOTE:


Placement on a level surface of free of obstructions (including snow, for winter operation) or air circulation ensures rated performance, reliable operation, and ease of maintenance. Site restrictions may compromise minimum clearances indicated below, resulting in unpredictable airflow patterns and possible diminished performance. YORK's unit controls will optimize operation without nuisance high-pressure safety cutouts; however, the system designer must consider potential performance degradation. Recommended minimum clearances: front to wall -6'; rear to wall -6'; cooler end to wall -4'0''; coil end to wall -6'; top - no obstructions allowed; distance between adjacent units -10'. No more than one adjacent wall may be higher than the unit. 1" nominal deflection isolators (not shown) will increase overall unit height by 6''.

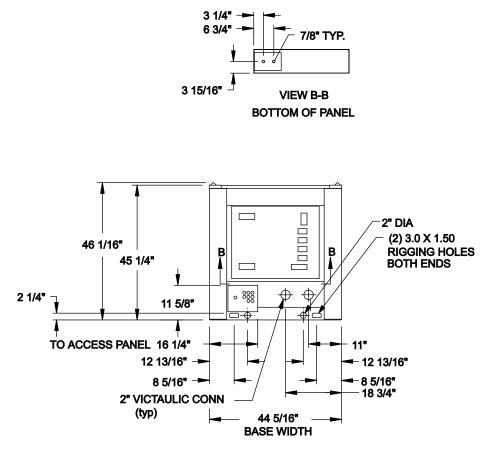
DIMENSIONS - YCAL0012 (ENGLISH) (CON'T)

6

DIMENSIONS - YCAL0018 (ENGLISH)


LEFT END

POWER: SINGLE POINT SUPPLY WITH TERMINAL BLOCK

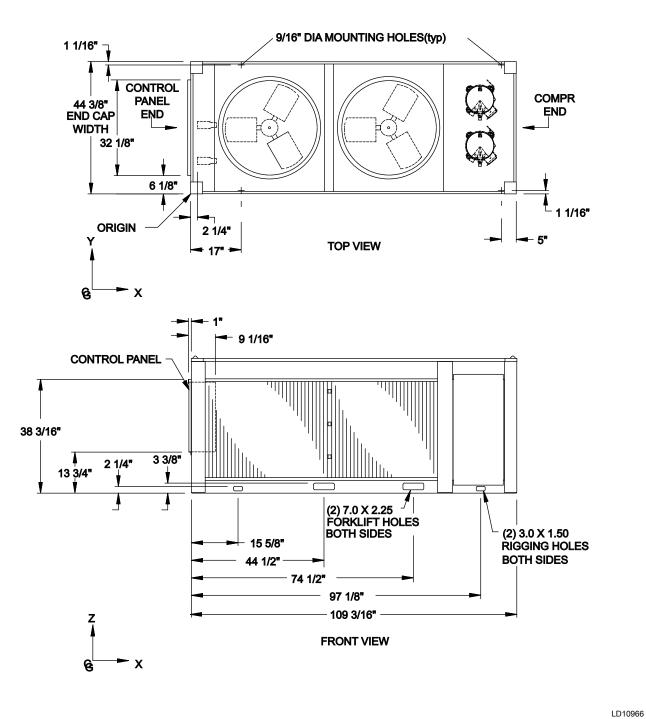

LD11813

NOTE:

Placement on a level surface of free of obstructions (including snow, for winter operation) or air circulation ensures rated performance, reliable operation, and ease of maintenance. Site restrictions may compromise minimum clearances indicated below, resulting in unpredictable airflow patterns and possible diminished performance. YORK's unit controls will optimize operation without nuisance high-pressure safety cutouts; however, the system designer must consider potential performance degradation. Recommended minimum clearances: front to wall -6'; rear to wall -6'; cooler end to wall -4'0''; coil end to wall -6'; top - no obstructions allowed; distance between adjacent units -10'. No more than one adjacent wall may be higher than the unit. 1" nominal deflection isolators (not shown) will increase overall unit height by 6''.

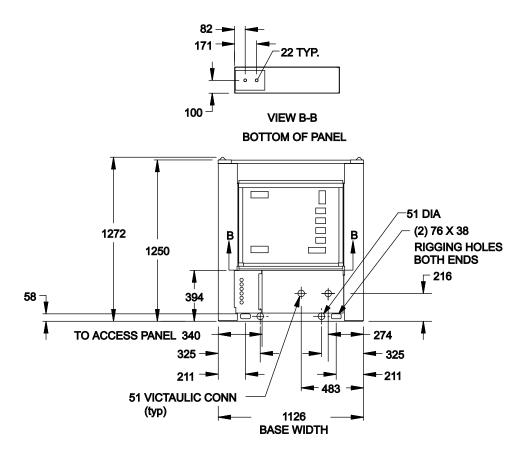
DIMENSIONS - YCAL0021 (ENGLISH)

LEFT END


POWER: SINGLE POINT SUPPLY WITH TERMINAL BLOCK

LD11815

NOTE:

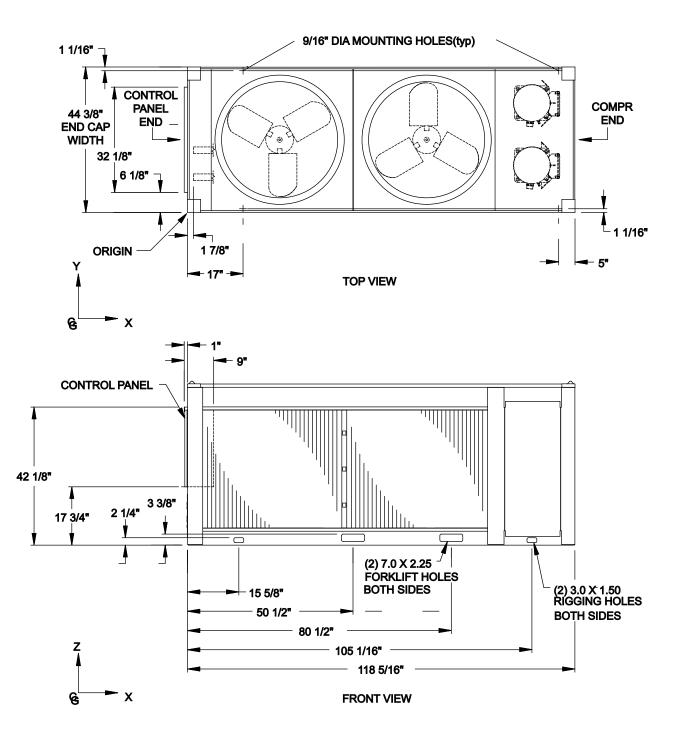

Placement on a level surface of free of obstructions (including snow, for winter operation) or air circulation ensures rated performance, reliable operation, and ease of maintenance. Site restrictions may compromise minimum clearances indicated below, resulting in unpredictable airflow patterns and possible diminished performance. YORK's unit controls will optimize operation without nuisance high-pressure safety cutouts; however, the system designer must consider potential performance degradation. Recommended minimum clearances: front to wall -6'; rear to wall -6'; cooler end to wall -4'0''; coil end to wall -6'; top - no obstructions allowed; distance between adjacent units -10'. No more than one adjacent wall may be higher than the unit. 1" nominal deflection isolators (not shown) will increase overall unit height by 6''.

DIMENSIONS - YCAL0021 (ENGLISH) (CON'T)

JOHNSON CONTROLS

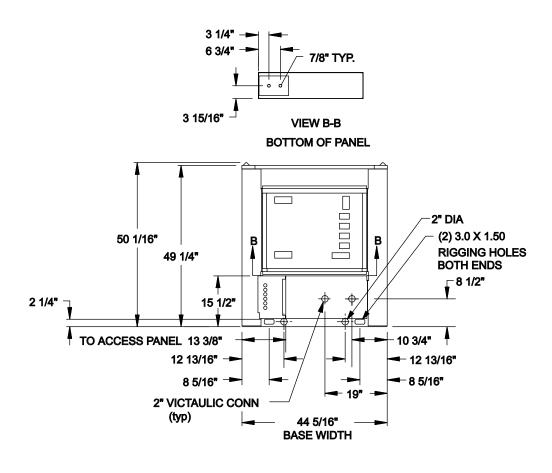
DIMENSIONS - YCAL0025 (ENGLISH)

LEFT END


POWER: SINGLE POINT SUPPLY WITH TERMINAL BLOCK

LD11817

NOTE:

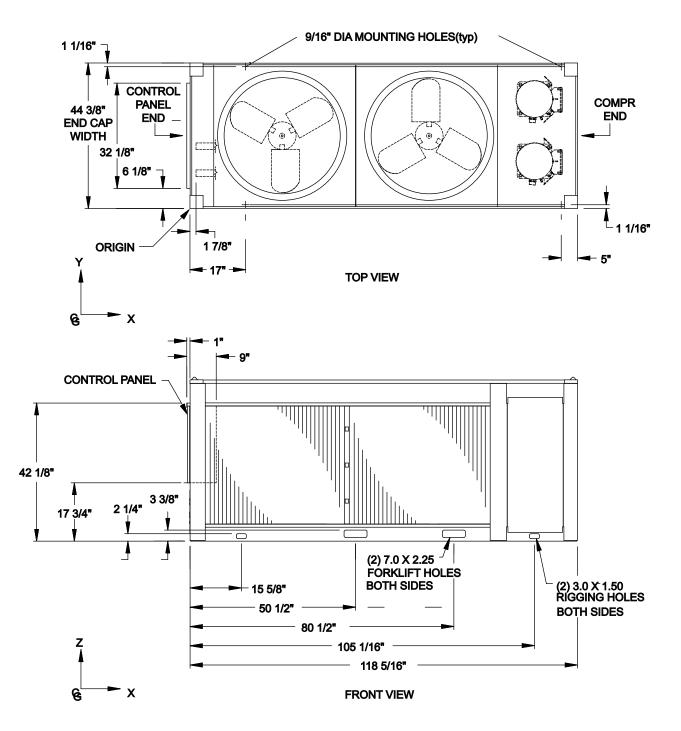

Placement on a level surface of free of obstructions (including snow, for winter operation) or air circulation ensures rated performance, reliable operation, and ease of maintenance. Site restrictions may compromise minimum clearances indicated below, resulting in unpredictable airflow patterns and possible diminished performance. YORK's unit controls will optimize operation without nuisance high-pressure safety cutouts; however, the system designer must consider potential performance degradation. Recommended minimum clearances: front to wall -6'; rear to wall -6'; cooler end to wall -4'0''; coil end to wall -6'; top - no obstructions allowed; distance between adjacent units -10'. No more than one adjacent wall may be higher than the unit. 1" nominal deflection isolators (not shown) will increase overall unit height by 6''.

DIMENSIONS - YCAL0025 (ENGLISH) (CON'T)

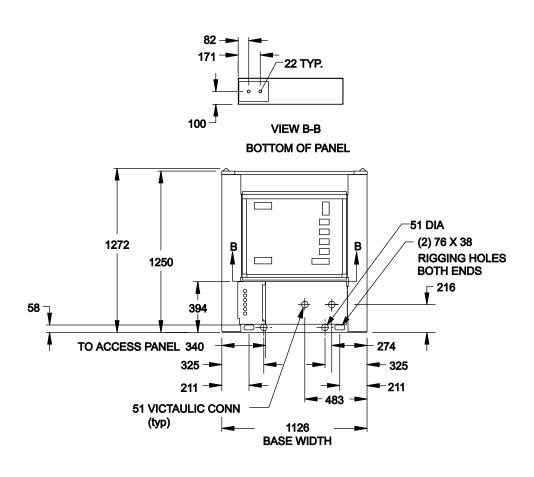
FORM 150.66-NM2 (906)

DIMENSIONS - YCAL0027 (ENGLISH)

LEFT END


POWER: SINGLE POINT SUPPLY WITH TERMINAL BLOCK

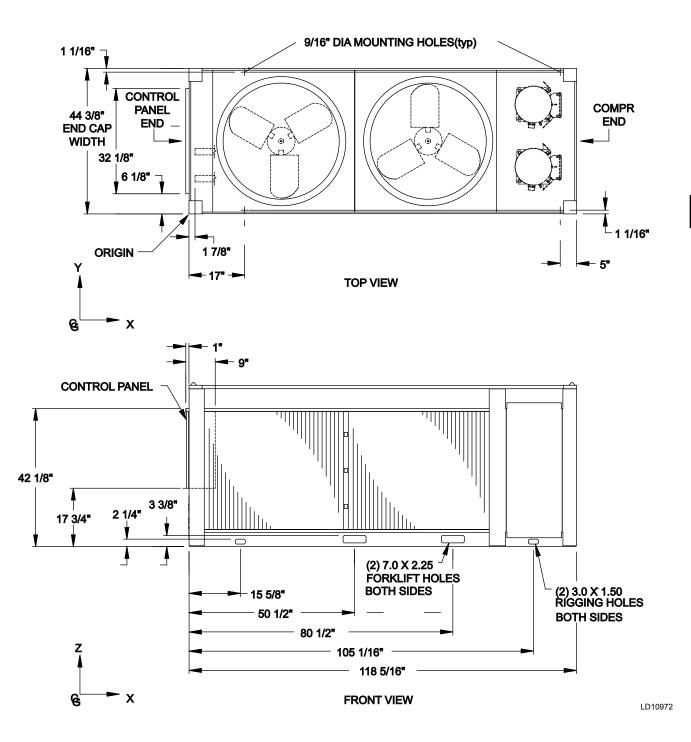
LD11819


NOTE:

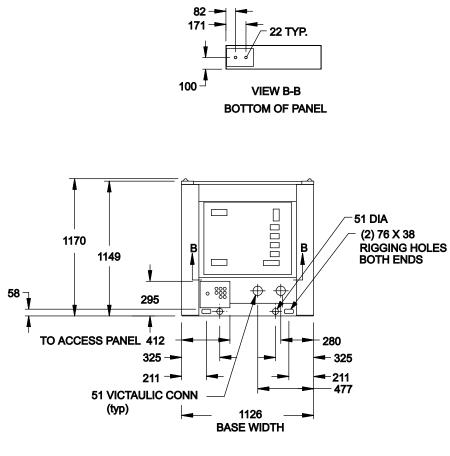
Placement on a level surface of free of obstructions (including snow, for winter operation) or air circulation ensures rated performance, reliable operation, and ease of maintenance. Site restrictions may compromise minimum clearances indicated below, resulting in unpredictable airflow patterns and possible diminished performance. YORK's unit controls will optimize operation without nuisance high-pressure safety cutouts; however, the system designer must consider potential performance degradation. Recommended minimum clearances: front to wall -6'; rear to wall -6'; cooler end to wall -4'0''; coil end to wall -6'; top - no obstructions allowed; distance between adjacent units -10'. No more than one adjacent wall may be higher than the unit. 1" nominal deflection isolators (not shown) will increase overall unit height by 6''.

DIMENSIONS - YCAL0027 (ENGLISH) (CON'T)

DIMENSIONS - YCAL0032 (ENGLISH)


LEFT END

POWER: SINGLE POINT SUPPLY WITH TERMINAL BLOCK


LD11821

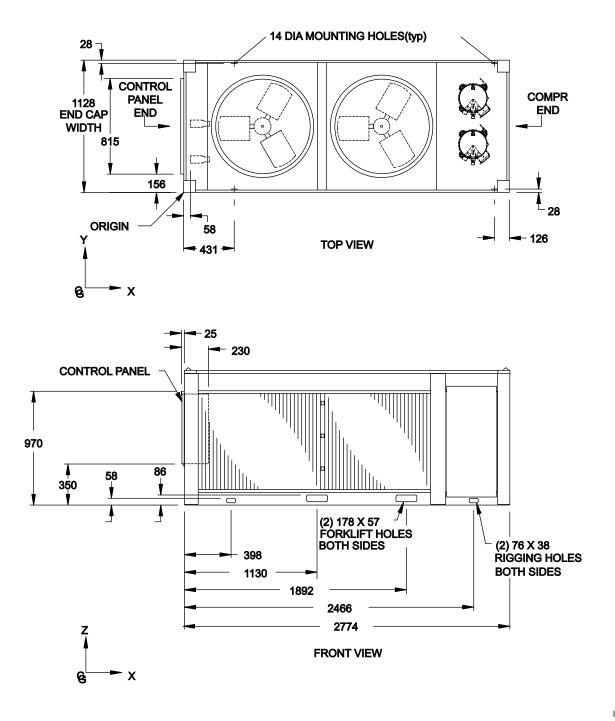
NOTE:

Placement on a level surface of free of obstructions (including snow, for winter operation) or air circulation ensures rated performance, reliable operation, and ease of maintenance. Site restrictions may compromise minimum clearances indicated below, resulting in unpredictable airflow patterns and possible diminished performance. YORK's unit controls will optimize operation without nuisance high-pressure safety cutouts; however, the system designer must consider potential performance degradation. Recommended minimum clearances: front to wall -6'; rear to wall -6'; cooler end to wall -4'0''; coil end to wall -6'; top - no obstructions allowed; distance between adjacent units -10'. No more than one adjacent wall may be higher than the unit. 1" nominal deflection isolators (not shown) will increase overall unit height by 6''.

DIMENSIONS - YCAL0012 (SI)

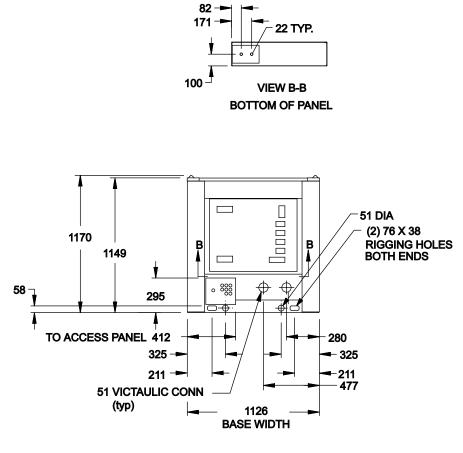
LEFT END

POWER: SINGLE POINT SUPPLY WITH TERMINAL BLOCK


LD11823

NOTE: All dimensions are in mm unless specified otherwise.

NOTE:


Placement on a level surface of free of obstructions (including snow, for winter operation) or air circulation ensures rated performance, reliable operation, and ease of maintenance. Site restrictions may compromise minimum clearances indicated below, resulting in unpredictable airflow patterns and possible diminished performance. YORK's unit controls will optimize operation without nuisance high-pressure safety cutouts; however, the system designer must consider potential performance degradation. Recommended minimum clearances: front to wall - 2m; rear to wall - 2m; cooler end to wall - 1.2m; coil end to wall - 2m; top - no obstructions allowed; distance between adjacent units - 3m. No more than one adjacent wall may be higher than the unit. 1" nominal deflection isolators (not shown) will increase overall unit height by 152mm.

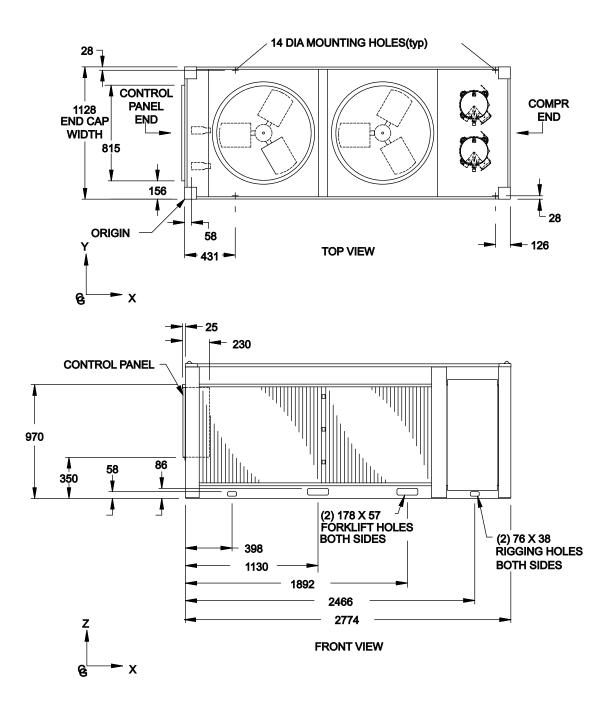
DIMENSIONS - YCAL0012 (SI) (CON'T)

LD11824

DIMENSIONS - YCAL0018 (SI)

LEFT END

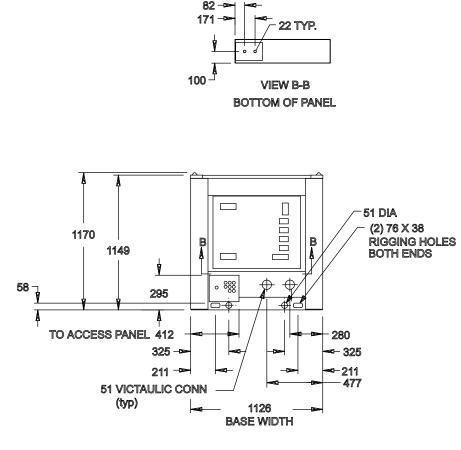
POWER: SINGLE POINT SUPPLY WITH TERMINAL BLOCK


LD11825

NOTE: All dimensions are in mm unless specified otherwise.

NOTE:

Placement on a level surface of free of obstructions (including snow, for winter operation) or air circulation ensures rated performance, reliable operation, and ease of maintenance. Site restrictions may compromise minimum clearances indicated below, resulting in unpredictable airflow patterns and possible diminished performance. YORK's unit controls will optimize operation without nuisance high-pressure safety cutouts; however, the system designer must consider potential performance degradation. Recommended minimum clearances: front to wall - 2m; rear to wall - 2m; cooler end to wall - 1.2m; coil end to wall - 2m; top - no obstructions allowed; distance between adjacent units - 3m. No more than one adjacent wall may be higher than the unit. 1" nominal deflection isolators (not shown) will increase overall unit height by 152mm.


DIMENSIONS - YCAL0018 (SI) (CON'T)

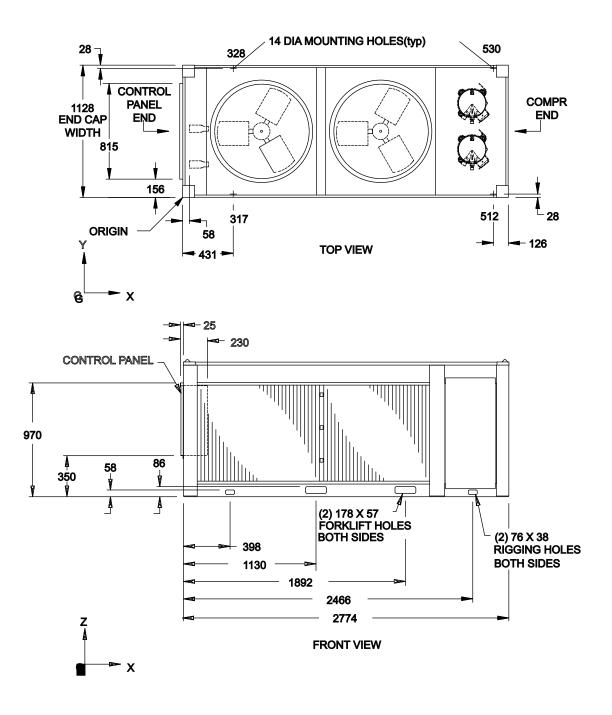
6

LD11826

DIMENSIONS - YCAL0021 (SI)

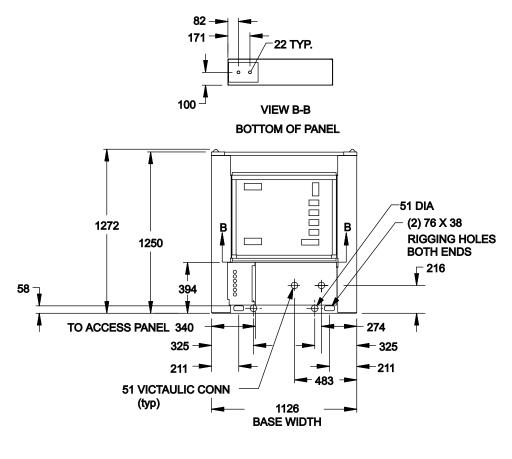
LEFT END

POWER: SINGLE POINT SUPPLY WITH TERMINAL BLOCK


LD11827

NOTE: All dimensions are in mm unless specified otherwise.

NOTE:


Placement on a level surface of free of obstructions (including snow, for winter operation) or air circulation ensures rated performance, reliable operation, and ease of maintenance. Site restrictions may compromise minimum clearances indicated below, resulting in unpredictable airflow patterns and possible diminished performance. YORK's unit controls will optimize operation without nuisance high-pressure safety cutouts; however, the system designer must consider potential performance degradation. Recommended minimum clearances: front to wall – 2m; rear to wall – 2m; cooler end to wall – 1.2m; coil end to wall - 2m; top – no obstructions allowed; distance between adjacent units – 3m. No more than one adjacent wall may be higher than the unit. 1" nominal deflection isolators (not shown) will increase overall unit height by 152mm.

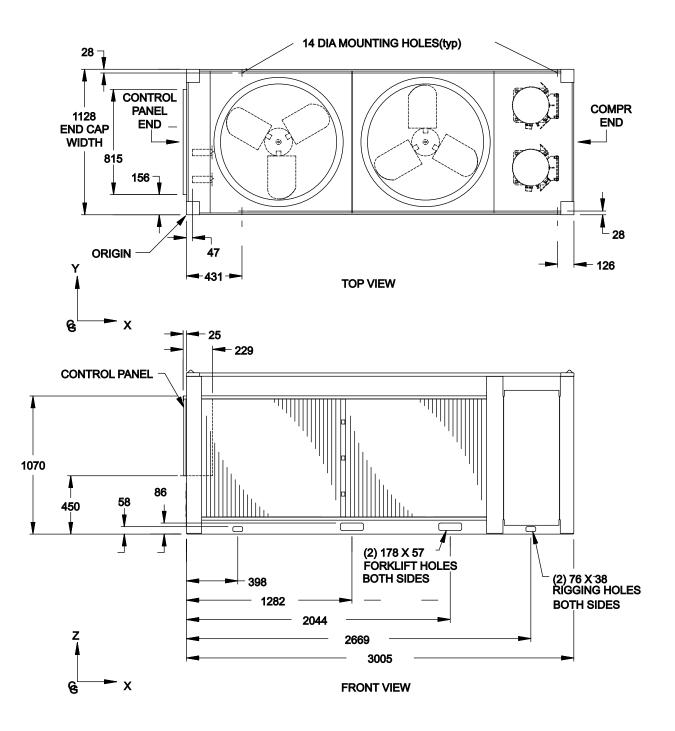
DIMENSIONS - YCAL0021 (SI) (CON'T)

LD11828

DIMENSIONS - YCAL0025 (SI)

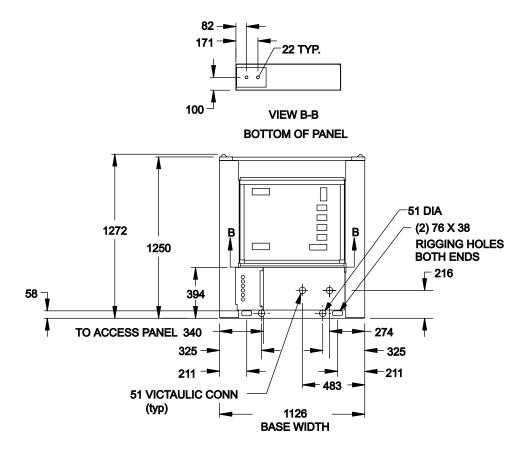
LEFT END

POWER: SINGLE POINT SUPPLY WITH TERMINAL BLOCK


LD11829

NOTE: All dimensions are in mm unless specified otherwise.

NOTE:


Placement on a level surface of free of obstructions (including snow, for winter operation) or air circulation ensures rated performance, reliable operation, and ease of maintenance. Site restrictions may compromise minimum clearances indicated below, resulting in unpredictable airflow patterns and possible diminished performance. YORK's unit controls will optimize operation without nuisance high-pressure safety cutouts; however, the system designer must consider potential performance degradation. Recommended minimum clearances: front to wall – 2m; rear to wall – 2m; cooler end to wall – 1.2m; coil end to wall - 2m; top – no obstructions allowed; distance between adjacent units – 3m. No more than one adjacent wall may be higher than the unit. 1" nominal deflection isolators (not shown) will increase overall unit height by 152mm.

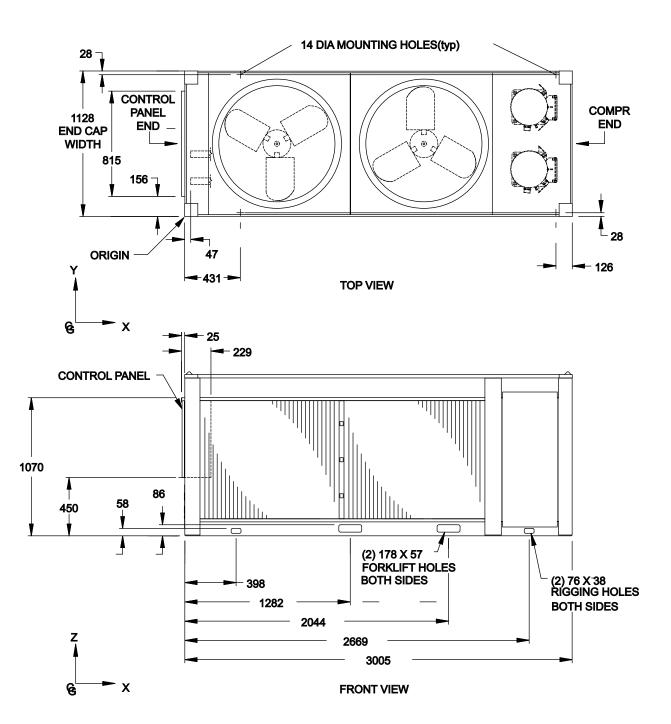
DIMENSIONS - YCAL0025 (SI) (CON'T)

6

DIMENSIONS - YCAL0027 (SI)

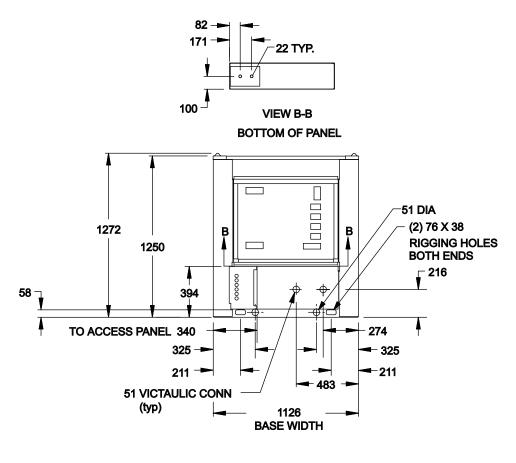
LEFT END

POWER: SINGLE POINT SUPPLY WITH TERMINAL BLOCK


LD11831

NOTE: All dimensions are in mm unless specified otherwise.

NOTE:


Placement on a level surface of free of obstructions (including snow, for winter operation) or air circulation ensures rated performance, reliable operation, and ease of maintenance. Site restrictions may compromise minimum clearances indicated below, resulting in unpredictable airflow patterns and possible diminished performance. YORK's unit controls will optimize operation without nuisance high-pressure safety cutouts; however, the system designer must consider potential performance degradation. Recommended minimum clearances: front to wall - 2m; rear to wall - 2m; cooler end to wall - 1.2m; coil end to wall - 2m; top - no obstructions allowed; distance between adjacent units - 3m. No more than one adjacent wall may be higher than the unit. 1" nominal deflection isolators (not shown) will increase overall unit height by 152mm.

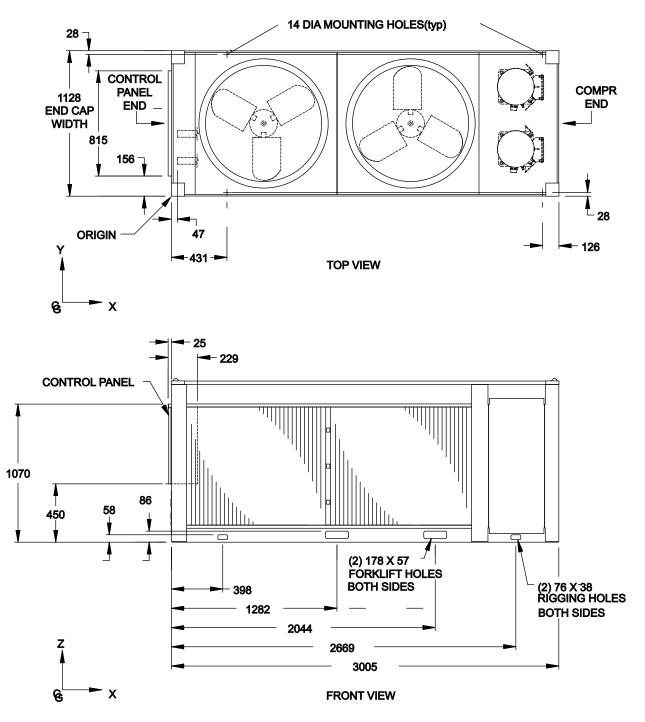
DIMENSIONS - YCAL0027 (SI) (CON'T)

LD11832

DIMENSIONS - YCAL0032 (SI)

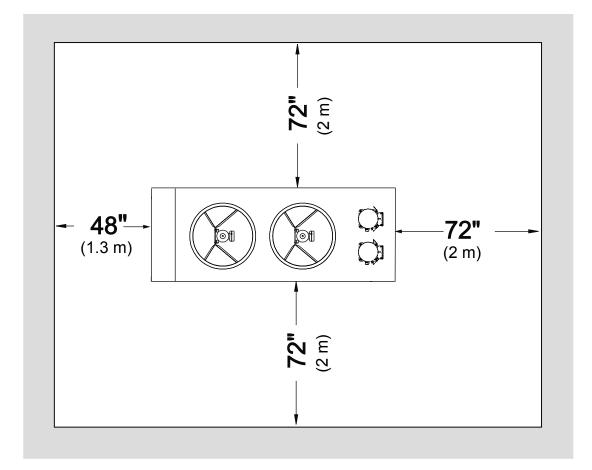
LEFT END

POWER: SINGLE POINT SUPPLY WITH TERMINAL BLOCK


LD11833

NOTE: All dimensions are in mm unless specified otherwise.

NOTE:


Placement on a level surface of free of obstructions (including snow, for winter operation) or air circulation ensures rated performance, reliable operation, and ease of maintenance. Site restrictions may compromise minimum clearances indicated below, resulting in unpredictable airflow patterns and possible diminished performance. YORK's unit controls will optimize operation without nuisance high-pressure safety cutouts; however, the system designer must consider potential performance degradation. Recommended minimum clearances: front to wall – 2m; rear to wall – 2m; cooler end to wall – 1.2m; coil end to wall - 2m; top – no obstructions allowed; distance between adjacent units – 3m. No more than one adjacent wall may be higher than the unit. 1" nominal deflection isolators (not shown) will increase overall unit height by 152mm.

DIMENSIONS - YCAL0032 (SI) (CON'T)

LD11834

TECHNICAL DATA - CLEARANCES

LD10506

NOTES:

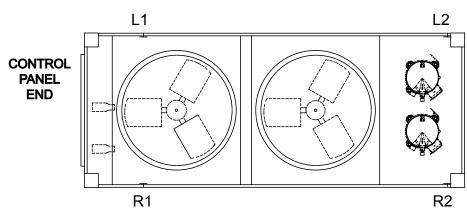

- 1. No obstructions allowed above the unit.
- 2. Only one adjacent wall may be higher than the unit.
- 3. Adjacent units should be 10 feet (3 Meters) apart.

FIG. 16 - UNIT CLEARANCES

ISOLATOR SELECTION (WITHOUT PUMP PACKAGE OPTION)

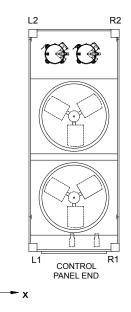
		Sta	ndard Aluminu	m Condenser	Fins	C	Optional Coppe	r Condenser F				
	Location	L1	L2	R1	R2	L1	L2	R1	R2			
	1" Deflection	CIP-B-450	CIP-B-750	CIP-B-450	CIP-B-750	CIP-B-450	CIP-B-750	CIP-B-450	CIP-B-750			
YCAL0012	Neoprene	ND-C										
	Seismic	SLRS- 2-C2-420	SLRS- 2-C2-520	SLRS- 2-C2-420	SLRS- 2-C2-520	SLRS- 2-C2-420	SLRS-2- C2-660	SLRS-2- C2-420	SLRS- 2-C2-520			
	1" Deflection	CIP-B-450	CIP-B-750	CIP-B-450	CIP-B-750	CIP-B-450	CIP-B-750	CIP-B-450	CIP-B-750			
YCAL0018	Neoprene	ND-C										
	Seismic	SLRS- 2-C2-420	SLRS- 2-C2-660	SLRS- 2-C2-420	SLRS- 2-C2-660	SLRS- 2-C2-420	SLRS-2- C2-660	SLRS-2- C2-420	SLRS- 2-C2-660			
	1" Deflection	CIP-B-450	CIP-B-750	CIP-B-450	CIP-B-750	CIP-B-450	CIP-B-750	CIP-B-450	CIP-B-750			
YCAL0021	Neoprene	ND-C										
	Seismic	SLRS- 2-C2-420	SLRS- 2-C2-660	SLRS- 2-C2-420	SLRS- 2-C2-660	SLRS-2 -C2-520	SLRS-2- C2-660	SLRS-2- C2-520	SLRS-2- C2-660			
	1" Deflection	CIP-B-450	CIP-B-1000	CIP-B-450	CIP-B-750	CIP-B-750	CIP-B-1000	CIP-B-750	CIP-B-1000			
YCAL0025	Neoprene	ND-C										
	Seismic	SLRS- 2-C2-520	SLRS- 2-C2-920	SLRS- 2-C2-420	SLRS- 2-C2-920	SLRS- 2-C2-520	SLRS-2- C2-920	SLRS-2- C2-520	SLRS-2- C2-920			
	1" Deflection	CIP-B-450	CIP-B-1000	CIP-B-450	CIP-B-750	CIP-B-750	CIP-B-1000	CIP-B-750	CIP-B-1000			
YCAL0027	Neoprene	ND-C										
	Seismic	SLRS- 2-C2-520	SLRS- 2-C2-920	SLRS- 2-C2-520	SLRS- 2-C2-920	SLRS- 2-C2-520	SLRS-2- C2-920	SLRS-2- C2-520	SLRS-2- C2-920			
	1" Deflection	CIP-B-450	CIP-B-1000	CIP-B-450	CIP-B- 1000	CIP-B-750	CIP-B-1000	CIP-B-750	CIP-B-1000			
YCAL0032	Neoprene	ND-C										
	Seismic	SLRS- 2-C2-520	SLRS- 2-C2-920	SLRS- 2-C2-520	SLRS- 2-C2-920	SLRS- 2-C2-520	SLRS-2- C2-920	SLRS-2- C2-520	SLRS-2- C2-920			

NOTE: ilsolators are selected using a serevice factor.

YCAL0012, 0018, 0021, 0025, 0032

JOHNSON CONTROLS

WEIGHT DISTRIBUTION AND ISOLATOR MOUNTING POSITIONS

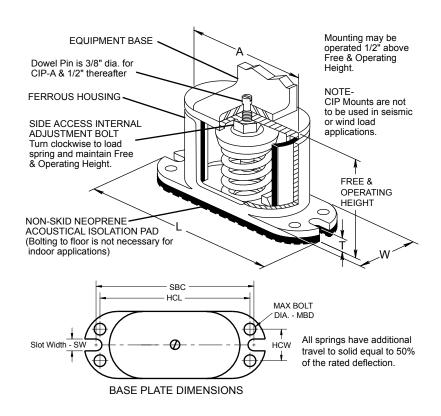

GENERAL

Weights of specific chiller models vary significantly as options are added. As a result, total weights, weights at individual isolator positions, and actual isolator selection at each position cannot be published due to the vast number of possible combinations. This information will be available when the specific chiller/ option selection is made from the local YORK sales office. Be aware, weights may change with each option along with possible isolator changes. Weights and isolators may need to be recalculated when the option selections are changed. Whenever the isolator option is ordered, the isolators will be shipped loose with the chiller. Packed with the isolators and also in the control panel information packet is a drawing and table specifically for each chiller, based on the option selection. The drawing and table will be similar to the ones shown below. The drawing will show the isolator locations along with the weight in pounds and kilograms at the specific location, isolator position, and location measurements for each isolator.

ISOLATOR LOCATIONS

Order No: Line No: 069528190101 1

Unit Shipping Wt.	kg	lbs
(Display on unit data nameplate)	617	1361


LOCATION	X DISTANCE INCHES / MM	Y DISTANCE INCHES / MM	VENDOR NUMBER	OPERATING WEIGHT LBS / (kg)
R1	43.22 (1097.8)	4.94 (125.5)	CIP-B-450 / RED	276 (125.2)
L1	1.09 (27.7)	4.94 (125.5	CIP-B-450 / RED	284 (128.8)
R2	43.22 (1097.8)	92.25 (2343.2)	CIP-B-276750 / WHITE	407 (184.6)
(189.6)L2	1.09 (27.7)	92.25 2343.2)	CIP-B-750 / WHITE	418 (189.6)

SAMPLE PRINTOUT SUPPLIED IN THE ISOLATOR PACKAGE AND IN THE CHILLER PANEL LITERATURE PACKET

ONE INCH DEFLECTION SPRING ISOLATOR CROSS-REFERENCE

CIP-X-

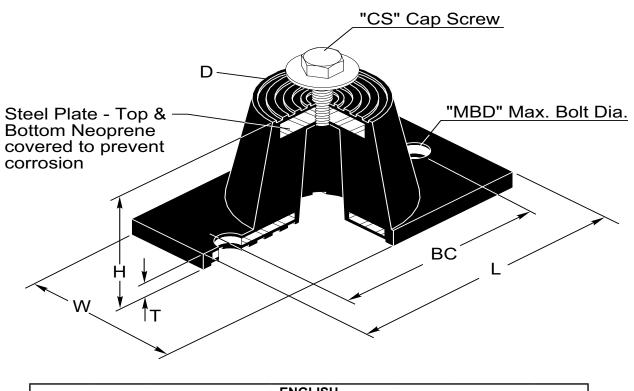
Illustration shows single spring CIP-B

	ENGLISH									
Size	Α	Т	L	W	SW	HCL	HCW	MBD	FREE HT	MIN HT
CIP-2	5 - 3/4	8 - 1/ 4	1/ 2	2 - 3/4	7/16	6 - 1/2	1 - 1/2	3/ 8	6 - 1/8	5 - 1/4
	SI									
CIP-2	146.0	209.5	12.7	69.8	11.1	165.1	38.1	3/8	155.5	133.3

Weight Range (Ibs)	Weight Range (kg)	Model Number	Color	YORK P/N
239 to 384 lbs	108 to 174 kg	CIP - B - 450	Red	029-24583-002
384 to 639 lbs	174 to 290 kg	CIP - B - 750	White	029-24583-003
639 to 851 lbs	290 to 386 kg	CIP - B - 1000	Blue	-29-24593-004

INSTALLATION OF 1" DEFLECTION MOUNTS

- 1. Floor or steel frame should be level and smooth.
- 2. For pad installations, isolators do not normally require bolting. If necessary, anchor isolators to floor through bolt holes in the base plate.


Isolators must be bolted to the substructure and the equipment must be bolted to the isolators when outdoor equipment is exposed to wind forces.

- 3. Lubricate the threads of adjusting bolt. Loosen the hold down bolts to allow for isolator adjustment.
- 4. Block the equipment 10mm (1/4") higher than the specified free height of the isolator. To use the isolator as blocking for the equipment, insert a 10mm (1/4") shim between the upper load plate and vertical uprights. Lower the equipment on the blocking or shimmed isolators.

- 5. Complete piping and fill equipment with water, refrigerant, etc.
- 6. Turn leveling bolt of first isolator four full revolutions and proceed to each mount in turn.
- 7. Continue turning leveling bolts until the equipment is fully supported by all mountings and the equipment is raised free of the spacer blocks or shims. Remove the blocks or shims.
- 8. Turn the leveling bolt of all mountings in either direction in order to level the installation.
- 9. Tighten the nuts on hold down bolts to permit a clearance of 2mm (1/8") between resilient washer and underside of channel cap plate.
- 10. Installation is now complete.

NEOPRENE ISOLATOR CROSS-REFERENCE

ENGLISH									
Size	D	Н	L	Т	W	BC	CS	MBD	
ND-C	2 9/16	2 3/4	5 1/2	1/ 4	2 5/16	4 1/80	1/2- 13 x 1"	1/ 2"	

				SI				
ND-C	65.1	69.9	139.7	6.4	58.7	101.9	1/2- 13 x 1"	1/ 2"

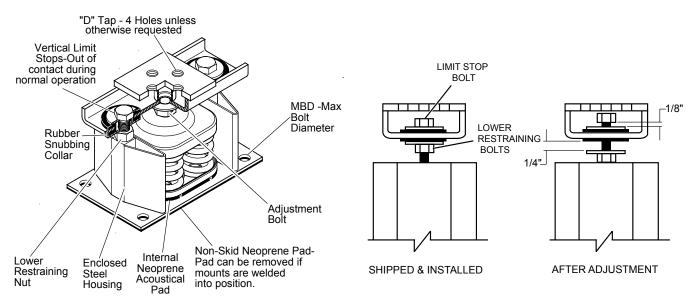
Weight Range (Ibs)	Weight Range (kg)	Model Number	Color	YORK P/N
Up to 751 lbs	Up to 341 kg	ND-C	Yellow	029-24585-006

TWO INCH DEFLECTION, SEISMIC SPRING ISOLATOR CROSS-REFERENCE

NOTES: Illustration above shows a SLRS-4-C2 (4 springs). SLRS-8-2 & C2 have 1 spring, and SLRS-2-C2 has two springs. SLRS-6-C2 has six springs and SLRS-9-C2 has nine springs.

ENGLISH									
SIZE	Н	Т	D	Е	L	HCL	W	HCW	MBD
2-C2	8-1/2"	3/8"	5/8"	1-3/8"	14"	12-1/4"	5-1/4"	3-1/ 2"	5/8"

SI									
SIZE	Н	Т	D	Е	L	HCL	W	HCW	MBD
2-C2	215.9	9.5	15.9	34.9	355.6	311.2	133.4	88.9	5/8"


*Weight Range (Ibs)	Weight Range (kg)	Model Number	Color	YORK P/N
Up to 358 lbs	Up to 162 kg	SLRS-2-C2-	Red	029-24585-006
358 to 443 lbs	162 to 201 kg	SLRS-2-C2-	White	029-24585-007
443 to 582 lbs	201 to 264 kg	SLRS-2-C2-	Black	029-24585-008
582 to 783 lbs	264 to 335 kg	SLRS-2-C2-	Blue	029-24585-009
783 to 1038 lbs	335 to 471 kg	SLRS-2-C2-	Green	029-24585-010
1038 to 1497 lbs	471 to 679 kg	SLRS-2-C2-	Gray	029-24585-011
1497 to 2058 lbs	679 to 933 kg	SLRS-2-C2-	Silver	029-24585-012
2058 to 2619 lbs	933 to 1188 kg	SLRS-2-C2-	Gray w/ red	029-24585-013
2619 to 3180 lbs	1188 to 1442 kg	SLRS-2-C2-	Silver w/ red	029-24585-014

*Value is de-rated by 15%

SLRS SEISMIC ISOLATOR INSTALLATION AND ADJUSTMENT

TO INSTALL AND ADJUST MOUNTS

- 1. Supports for mountings must be leveled to installation's acceptable tolerances.
- 2. Mountings not subjected to seismic or wind forces do not require bolting to supports.
- 3. Mountings subjected to seismic or wind forces must be bolted or welded in position.
- 4. If mountings are welded in position, remove lower friction pad before welding.
- 5. Set mountings with top channels held in place by the lower restraining nuts and limit stops.
- 6. Place equipment on mountings and secure by bolting or welding.
- 7. Hold lower restraining nut in place and turn vertical limit stop bolt counter-clockwise until there is a 1/8" gap between the bolt head and the steel washer.
- 8. Turn adjustment bolt 8 turns on each mount.
- 9. Take one additional complete turn on each adjustment bolt in sequence until the top plate lifts off of the lower restraining nuts. Take no additional turns on that mount. Continue with equal turns on the other mounts until the top plates lift off of the lower restraining nuts of all mounts.
- 10. Hold the limit stop bolt in place and turn the lower restraining nut clockwise and tighten it against the stanchion. Repeat the same procedure on all mounts.
- 11. Top plate should remain at a fixed elevation, plus or minus 1/8".

LD10568

YORK MILLENNIUM CONTROL CENTER

UNIT CONTROLS

00065VIP

INTRODUCTION

The YORK MicroComputer Control Center is a microprocessor based control system designed to provide the entire control for the liquid chiller. The control logic embedded in the microprocessor based control system will provide control for the chilled liquid temperatures, as well as sequencing, system safeties, displaying status, and daily schedules. The MicroComputer Control Center consists of four basic components, 1) microprocessor board, 2) transformer, 3) display and 4) keypad. The keypad allows programming and accessing setpoints, pressures, temperatures, cutouts, daily schedule, options, and fault information.

Remote cycling, demand limiting and chilled liquid temperature reset can be accomplished by field supplied contacts.

Compressor starting/stopping and loading/unloading decisions are performed by the Microprocessor to maintain leaving or return chilled liquid temperature. These decisions are a function of temperature deviation from setpoint.

A Master ON/Off switch is available to activate or deactivate the unit.

MICROPROCESSOR BOARD

The Microprocessor Board is the controller and decision maker in the control panel. System inputs such as pressure transducers and temperature sensors are connected directly to the Microprocessor Board. The Microprocessor Board circuitry multiplexes the analog inputs, digitizes them, and scans them to keep a constant watch on the chiller operating conditions. From this information, the Microprocessor then issues commands to the Relay Outputs to control contactors, solenoids, etc. for Chilled Liquid Temperature Control and to react to safety conditions.

Keypad commands are acted upon by the micro to change setpoints, cutouts, scheduling, operating requirements, and to provide displays.

The on-board power supply converts 24VAC from the 1T transformer to a +12VDC and +5VDC regulated supply located on the Microprocessor Board. This voltage is used to operate integrated circuitry on the board. The 40 character display and unit sensors are supplied power from the microboard 5VDC supply.

24VAC is rectified and filtered to provide unregulated +30VDC to supply the flow switch, PWM remote temperature reset, and demand limit circuitry which is available to be used with field supplied contacts. The Microprocessor Board energizes on-board relays to output 120VAC to motor contactors, solenoid valves, etc. to control system operation. 120VAC is supplied to the optimal T3 Transformer, which supplies 12VAC to the bridge diode module. The Bridge Diode Module rectifies the voltage to -12V unreg. The +12V unreg voltage supplies power to the Remote Temp. Reset Circuit Board.

UNIT SWITCH

A unit ON/OFF switch is just underneath the keypad. This switch allows the operator to turn the entire unit "OFF" if desired. The switch must be placed in the "ON" position for the chiller to operate.

DISPLAY

The 40 Character Display (2 lines of 20 characters) is a liquid crystal display used for displaying system parameters and operator messages.

The display in conjunction with the keypad, allows the operator to display system operating parameters as well as access programmed information already in memory. The display has a lighted background for night viewing and for viewing in direct sunlight.

When a key is pressed, such as the OPER DATA key, system parameters will be displayed and will remain on the display until another key is pressed. The system parameters can be scrolled with the use of the \uparrow (UP) and \downarrow (DOWN) arrow keys. The display will update all information at a rate of about 1 a second.

Display Messages may show characters indicating "greater than" (>) or "less than" (<). These characters indicate the actual values are greater than or less than the limit values which are being displayed.

KEYPAD

The 12 button non-tactile keypad allows the user to retrieve vitals system parameters such as system pressures, temperatures, compressor running times and starts, option information on the chiller, and system setpoints. This data is useful for monitoring chiller operation, diagnosing potential problems, troubleshooting, and commissioning the chiller.

It is essential the user become familiar with the use of the keypad and display. This will allow the user to make full use of the capabilities and diagnostic features available.

BATTERY BACK-UP

The Microprocessor Board contains a Real Time Clock integrated circuit chip with an internal battery backup. The purpose of this battery backup is to assure any programmed values (setpoints, clock, cutouts, etc.) are not lost during a power failure regardless of the time involved in a power cut or shutdown period.

TRANSFORMER

A 40 VA, 120/24VAC 50/60Hz transformer is provided to supply power to the Microprocessor Board, which in turn rectifies, filters, and regulates as neccessary to supply power to the display, sensors, and transducers.

SINGLE SYSTEM SELECT AND PROGRAMMING # OF COMPRESSORS

The control software is common between single (1) and dual (2) system units. A jumper is installed between terminals 13 and 17 on the user terminal block to configure a unit for a single system. Dual (2) system chillers do not have a jumper installed. The jumper is only checked by the micro on power-up.

The total number of compressors is programmable under the Program Key. Single (1) system chillers have 2 compressors.

"STATUS" KEY

SYS 1 COMPS RUN

STATUS

00066VIP

UNIT STATUS

Pressing the STATUS key will enable the operator to determine current chiller operating status. The messages displayed will include running status, cooling demand, fault status, external cycling device status. The display will be a single message relating to the highest priority message as determined by the micro. Status messages fall into the categories of General Status and Fault Status.

The following General, Safety, and Warning messages are displayed when the Status key is pressed. Following each displayed message is an explanation pertaining to that particular message.

GENERAL STATUS MESSAGES

In the case of messages which apply to individual systems, SYS 1 and SYS 2 messages will both be displayed and may be different. In the case of single system units, all SYS 2 messages will be blank.

UNIT SWITCH OFF SHUTDOWN

This message informs the operator that the UNIT switch on the control panel is in the OFF position which will not allow the unit to run.

REMOTE CONTROLLED SHUTDOWN

The REMOTE CONTROLLED SHUTDOWN message indicates that either an ISN system or RCC has turned the unit "OFF", not allowing it to run.

The DAILY SCHEDULE SHUTDOWN message indicates that the daily/holiday schedule programmed is keeping the unit from running.

NO RUN PERM shows that either the flow switch is open or a remote start/stop contact is open in series with the flow switch. A 3-second delay is built into the software to prevent nuisance shutdowns due to erroneous signals on the run permissive input.

SYS SWITCH OFF tells that the system switch under OPTIONS is turned "OFF". The system will not be allowed to run until the switch is turned back on.

SYS 1 NO COOL LOAD

This message informs the operator that the chilled liquid temperature is below the point (determined by the setpoint and control range) that the micro will bring on a system or that the micro has not loaded the lead system far enough into the loading sequence to be ready to bring the lag system "ON".

The COMPS RUNNING message indicates that the respective system is running due to demand. The "X" will be replaced with the number of compressors in that system that are running.

The anti-recycle timer message shows the amount of time left on the respective systems anti-recycle timer. This message is displayed when the system is unable to start due the anti-recycle timer being active.

The anti-coincidence timer is a software feature that guards against 2 systems starting simultaneously. This assures instantaneous starting current does not become excessively high due to simultaneous starts. The micro limits the time between compressor starts to 1 minute regardless of demand or the anti-recycle timer being timed out. The anti-coincidence timer is only present on two system units.

When this message appears, discharge pressure limiting is in effect. The Discharge Pressure Limiting feature is integral to the standard software control; however the discharge transducer is optional on some models. Therefore, it is important to keep in mind that this control will not function unless the discharge transducer is installed in the system. The limiting pressure is a factory set limit to keep the system from faulting on the high discharge pressure cutout due to high load or pull down conditions. When the unload point is reached, the micro will automatically unload the affected system by de energizing one compressor. The discharge pressure unload will occur when the discharge pressure gets within 15 PSIG of the programmed discharge pressure cutout. This will only happen if the system is fully loaded and will shut only one compressor off. If the system is not fully loaded, discharge limiting will not go into effect. Reloading the affected system will occur when the discharge pressure and 10 minutes have elapsed.

When this message appears, suction pressure limiting is in effect. The suction pressure limit is a control point that limits the loading of a system when the suction pressure drops to within 15% above the suction pressure cutout. On a standard system programmed for 44 PSIG/3.0 Bar suction pressure cutout, the micro would inhibit loading of the affected system with the suction pressure less than or equal to 1.15 * 44 PSIG/3.0 Bar = 50 PSIG/3.5 Bar. The system will be allowed to load after 60 seconds and after the suction pressure rises above the suction pressure load limit point.

This message indicates that load limiting is in effect and the percentage of the limiting in effect. This limiting could be due to the load limit/pwm input, ISN or RCC controller sending a load limit command.

If MANUAL OVERRIDE mode is selected, the STATUS display will display this message. This will indicate that the Daily Schedule is being ignored and the chiller will start-up when chilled liquid temperature allows, Remote Contacts, UNIT switch and SYSTEM switches permitting. This is a priority message and cannot be overridden by anti-recycle messages, fault messages, etc. when in the STATUS display mode. Therefore, do not expect to see any other STATUS messages when in the MANUAL OVERRIDE mode. MANUAL OVERRIDE is to only be used in emergencies or for servicing. Manual override mode automatically disables itself after 30 minutes.

SYS 1 PUMPING DOWN

The PUMPING DOWN message indicates that a compressor in the respective system is presently in the process of pumping the system down. When pumpdown is initiated on shutdown, the liquid line solenoid or EEV will close and a compressor will continue to run. When the suction pressure decreases to the suction pressure cutout setpoint or runs for 180 seconds, whichever comes first, the compressor will cycle off.

FAULT SAFETY STATUS MESSAGES

Safety Status messages appear when safety thresholds in the unit have been exceeded. Safeties are divided into two categories – system safeties and unit safeties. System safeties are faults that cause the individual system to be shut down. Unit safeties are faults that cause all running compressors to be shut down. Following are display messages and explanations.

System Safeties

System safeties are faults that cause individual systems to be shut down if a safety threshold is exceeded for 3 seconds. They are auto reset faults in that the system will be allowed to restart automatically after the fault condition is no longer present. However, if 3 faults on the same system occur within 90 minutes, that system will be locked out on the last fault. This condition is then a manual reset. The system switch (under OPTIONS key) must be turned off and then back on to clear the lockout fault. Fault messages will be displayed whenever a system is locked out.

The Discharge Pressure Cutout is a software cutout in the microprocessor and is backed-up by a mechanical high pressure cutout switch located in the refrigerant circuit. It assures that the system pressure does not exceed safe working limits. The system will shutdown when the programmable cutout is exceeded and will be allowed to restart when the discharge pressure falls 40 PSIG below the cutout. *Discharge transducers must be installed for this function to operate*.

SYS 1 LOW SUCT PRESS

The Suction Pressure Cutout is a software cutout that helps protect the chiller from an evaporator freeze-up should the system attempt to run with a low refrigerant charge or a restriction in the refrigerant circuit.

Repeated starts after resetting a low suction pressure fault will cause evaporator freeze-up. Whenever a system locks out on this safety, immediate steps should be taken to identify the cause.

At system start, the cutout is set to 10% of programmed value. During the next 3 minutes the cutout point is ramped up to the programmed cutout point. If at any time during this 3 minutes the suction pressure falls below the ramped cutout point, the system will stop. *This cutout is completely ignored for the first 30 seconds of system run time to avoid nuisance shutdowns, especially on units that utilize a low pressure switch in place of the suction pressure transducer.*

After the first 3 minutes, if the suction pressure falls below the programmed cutout setting, a "transient protection routine" is activated. This sets the cutout at 10% of the programmed value and ramps up the cutout over the next 30 seconds. If at any time during this 30 seconds the suction pressure falls below the ramped cutout, the system will stop.

SYS 1 MP/HPCO INHIB

The Motor Protector/Mechanical High Pressure Cutout protect the compressor motor from overheating or the system from experiencing dangerously high discharge pressure.

This fault condition is present when CR1 (SYS 1) relay de-energizes due to the HP switch or motor protector opening. This causes the respective CR contacts to open causing 0VDC to be read on the inputs to the microboard. The fault condition is cleared when a 30VDC signal is restored to the input. The internal motor protector opens at $185^{\circ}F - 248^{\circ}F$ ($85^{\circ}C - 120^{\circ}C$) and auto resets. The mechanical HP switch opens at 405 PSIG +/- 10 PSIG (27.92 barg +/- .69 barg) and closes at 330 PSIG +/- 25 PSIG (22.75 barg +/- 1.72 barg).

The compressor is also equipped with a discharge temperature sensor for the purpose of sensing internal scroll temperature. This sensor protects the scrolls from overheating due to inadequate cooling that may occur when refrigerant charge is low, or superheat is too high.

When the sensor senses a high temperature, it opens the motor protector circuit in the compressor causing the compressor to shut down.

During the first two faults an MP/HP INHIBIT message will be displayed and the system will not be locked out. Only after the third fault in 90 minutes will the MP/HPCO FAULT message be displayed.

Whenever the motor protector or discharge sensor shuts down a compressor and the system, the internal compressor contacts will open for a period of 30 minutes to assure that the motor or scroll temperatures have time to dissipate the heat and cool down.

After 30 minutes, the contacts will close and the system will be permitted to restart. The micro will not try to restart the compressors in a system that shuts down on this safety for a period of 30 minutes to allow the internal compressor to time out.

During the 30 minute timeout, the MP/HPCO INHIB message will be displayed. The MP/HPCO fault will only be displayed after 3 shutdowns in 90 minutes, indicating the system is locked out and will not restart.

When the System Current Feedback option is installed and selected (Option 11 under OPTIONS Key Current Feedback), this safety will operate as follows. If the actual feedback voltage of the system proportional to currents exceeds the programmed trip voltage for 5 seconds, the system will shutdown.

SYS 1 LOW EVAP TEMP

The Low Evaporator Temperature Cutout is to protect the evaporator from freeze-up with R-407C. This safety uses the Cooler Inlet Refrigerant Temp Sensors to monitor evaporator inlet refrigerant temperature on each system and will shut down the system if the cutout is exceeded. These sensors are only installed on R-407C units. This safety is ignored for the first 300 seconds of runtime.

After 5 minutes of run time there is a 5 minute Low Evap Temp Safety Bypass Ramp: anytime the cooler inlet refrigerant temperature drops below the cutout will be lowered 6° F and ramped up to the original value over the next 5 minutes. If the cooler inlet refrigerant temperature rises above the original cutout during the ramp, the cutout will be reset to the original value and the ramp will be ended.

In water cooling mode, the cutout is fixed at 20° F. In glycol cooling mode, the cutout is 15° F below the leaving chilled liquid temperature cutout.

In either cooling mode, if the cooler inlet refrigerant temp. sensor reads out of range low, the system will also shut down.

The Low Superheat Cutout is to protect the compressor(s) from liquid floodback due to low suction superheat. This safety is only active when EEV is selected as the expansion valve in SERVICE Mode. This safety is ignored for the first 15 seconds of system runtime.

This safety can be triggered by two events. The first is when suction superheat $< 2.0^{\circ}$ F for 3 seconds. The second is when the EEV pilot solenoid is closed 10 times in 2 minutes due to low superheat.

The Sensor Failure Safety prevents the system from running when the sensors measuring superheat are not functioning properly. This safety is only active when EEV is selected as the expansion valve type in SERVICE Mode. This safety is ignored for the first 15 seconds of system runtime. This safety will shut down a system if either suction temperature or suction pressure sensors read out of range high or low. This condition must be present for 3 seconds to cause a system shutdown. The safety locks out a system after the first fault and will not allow automatic restarting.

Unit Safeties:

Unit safeties are faults that cause all running compressors to be shut down. Unit faults are auto reset faults in that the unit will be allowed to restart automatically after the fault condition is no longer present.

The Low Ambient Temp Cutout is a safety shutdown designed to protect the chiller from operating in a low ambient condition. If the outdoor ambient temperature falls below the programmable cutout, the chiller will shut down. Restart can occur when temperature rises $2^{\circ}F$ above the cutoff.

The Low Leaving Chilled Liquid Temp Cutout protects the chiller form an evaporator freeze-up should the chilled liquid temperature drop below the freeze point. This situation could occur under low flow conditions or if the micro panel setpoint values are improperly programmed. Anytime the leaving chilled liquid temperature (water or glycol) drops below the cutout point, the chiller will shutdown. Restart can occur when chilled liquid temperature rises 2°F above the cutout.

The Under Voltage Safety assures that the system is not operated at voltages where malfunction of the microprocessor could result in system damage. When the 115VAC to the micro panel drops below a certain level, a unit fault is initiated to safely shut down the unit. Restart is allowed after the unit is fully powered again and the anti-recycle timers have finished counting down.

UNIT FAULT: HIGH MTR CURR

When the CURRENT FEEDBACK ONE PER UNIT option is selected under the OPTIONS Key, the unit will shut down when the voltage exceeds the programmed trip voltage for 5 seconds.

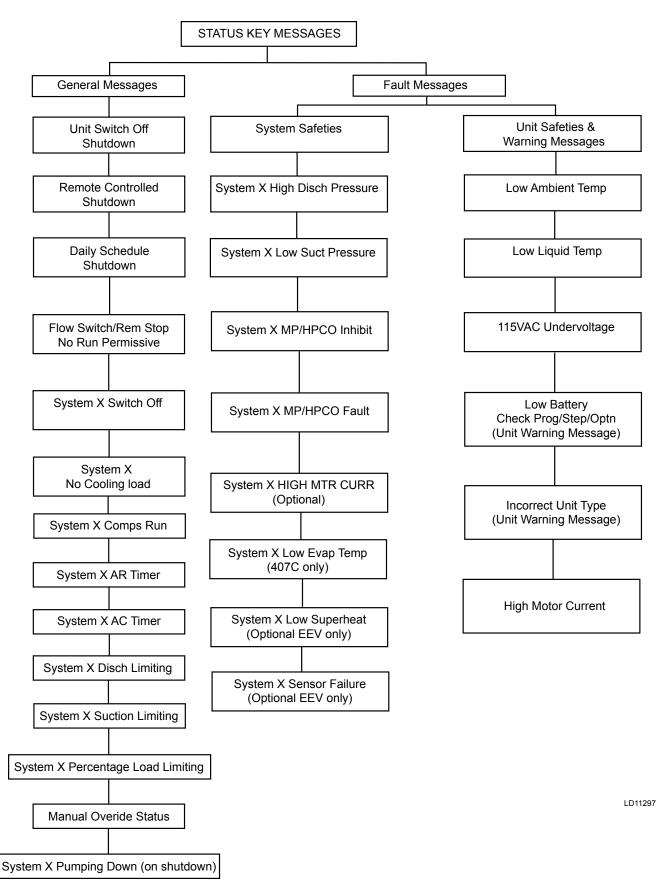
The trip voltage is programmed at the factory according to compressor or unit RLA.

Restart will occur after the anti-recycle timer times out.

UNIT WARNING

The following messages are not unit safeties and will not be logged to the history buffer. They are *unit warnings* and will not auto-restart. Operator intervention is required to allow a restart of the chiller.

The Low Battery Warning can only occur at unit power-up. On micro panel power-up, the RTC battery is checked. If a low battery is found, all programmed setpoints, program values, options, time, schedule, and history buffers will be lost. These values will all be reset to their default values which may not be the desired operating values. Once a faulty battery is detected, the unit will be prevented from running until the PROGRAM key is pressed. Once PROGRAM is pressed the anti-recycle timers will be set to the programmed anti-recycle time to allow the operator time to check setpoints, and if necessary, reprogram programmable values and options.


If a low battery is detected, it should be replaced as soon as possible. The programmed values will all be lost and the unit will be prevented from running on the next power interruption. The RTC/battery (031-00955-000) is located at U17 on the microboard.

INCORRECT UNIT TYPE

This indicates the condensing unit jumper is installed between J4-11 and J4-6, on a liquid chiller. This jumper must be removed to operate the chiller.

STATUS KEY MESSAGES

TABLE 18 - STATUS KEY MESSAGES QUICK REFERENCE LIST

7

DISPLAY/PRINT KEYS

00067VIP

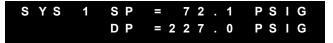
The Display/Print keys allow the user to retrieve system and unit information that is useful for monitoring chiller operation, diagnosing potential problems, troubleshooting, and commissioning the chiller.

System and unit information, unit options, setpoints, and scheduling can also be printed out with the use of a printer. Both real-time and history information are available.

OPER DATA Key

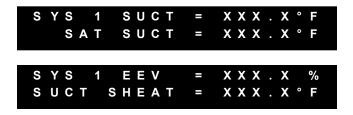
The OPER DATA key gives the user access to unit and system operating parameters. When the OPER DATA key is pressed, system parameters will be displayed and remain on the display until another key is pressed. After pressing the OPER DATA key, the various operating data screens can be scrolled through by using the \uparrow (UP) and \downarrow (DOWN) arrow keys or the ENTER/ADV key located under the "ENTRY" section.

With the "UNIT TYPE" set as a liquid chiller (via no jumper between J4-11 and J4-6), the following list of operating data screens are viewable under the Oper Data key in the order that they are displayed. The \downarrow (DOWN) arrow key scrolls through the displays in the order they appear below:


The chiller MUST be set to be a liquid chiller via no jumper between J4-11 and J4-6. DO NOT operate the chiller if not properly set up.

This display shows chilled leaving and return liquid temperatures. The minimum limit on the display for these parameters are 9.2° F (-12.7°C). The maximum limit on the display is 140°F (60°C).

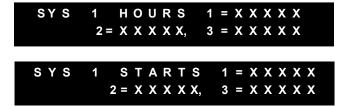
This display shows the ambient air temperature. The minimum limit on the display is 0.4°F (-17.6°C). The maximum limit on the display is 131.2°F (55.1°C).


These displays show suction and discharge pressures for each system. The discharge pressure transducer is optional on some models.

If the *optional* discharge transducer is not installed, the discharge pressure would display 0 PSIG (0 barg).

Some models come factory wired with a low pressure switch in place of the suction transducer. In this case, the suction pressure would only be displayed as the maximum suction pressure reading of >200 PSIG (13.79 barg) when closed, or < 0 PSIG (0 barg) when open.

The minimum limits for the display are: Suction Pressure: 0 PSIG (0 barg) Discharge Pressure: 0 PSIG (0 barg)


The maximum limits for the display are: Suction Pressure: 200 PSIG (13.79 barg) Discharge Pressure: 400 PSIG (27.58 barg)

These messages will be displayed for each system, if an EEV is installed in the system. The EEV % is the EEV controller output.

Cooler inlet temperatures, as measured by the refrigerant temperature sensor in the cooler, will be displayed on R-407c units for both systems.

The above two messages will appear sequentially for each system. The first display shows accumulated running hours of each compressor for the specific system. The second message shows the number of starts for each compressor on each system.

Run times and starts will only be displayed for the actual number of systems and compressors on the unit.

A total of 99,999 hours and starts can be logged before the counter rolls over to "0".

This display of the load and unload timers indicate the time in seconds until the unit can load or unload. Whether the systems loads or unloads is determined by how far the actual liquid temperature is from setpoint. A detailed description of unit loading and unloading is covered under the topic of Capacity Control.

The display of COOLING DEMAND indicates the current "step" in the capacity control scheme when in Return Water Control Mode. The number of available steps are determined by how many compressors are in the unit. In the above display, the "2" does not mean that two compressor are running but only indicates that the capacity control scheme is on step 2 of 8. Capacity Control is covered in more detail in this publication which provides specific information on compressor staging (for Return Water Control only).

The COOLING DEMAND message will be replaced with this message when Leaving Chilled liquid control is selected. This message indicates the temperature error and the rate of change of the chilled liquid temperature.

This display indicates the status of the evaporator pump contacts and the evaporator heater.

The evaporator pump dry contacts are energized when any compressor is running, or the unit is not OFF on the daily schedule and the unit switch is on, or the unit has shutdown on a Low Leaving Chilled Liquid fault. However, even if one of above is true, the pump will not run if the micro panel has been powered up for less than 30 seconds or if the pump has run in the last 30 seconds to prevent pump motor overheating.

The evaporator heater is controlled by ambient air temperature. When the ambient temperature drops below 40°F the heater is turned on. When the temperature rises above 45°F the heater is turned off. An under voltage condition will keep the heater off until full voltage is restored to the system.

ACTIVE REMOTE CTRL NONE

There are several types of remote systems that can be used to control or monitor the unit. The following messages indicate the type of remote control mode active:

- NONE no remote control active. Remote monitoring may be via ISN.
- ISN YORK Talk via ISN allows remote load limiting and temperature reset through an ISN system.
 - *LOAD LIM load limiting enabled. Can be either stage 1 or stage 2 of limiting.
 - *PWM TEMP EMS-PWM temperature reset
 - *Refer to the section on OPERATING CONTROLS.

If the micro is programmed for CURRENT FEEDBACK ONE PER UNIT under the OPTIONS Key, the display will show up as the first display prior to the SYS 1 displays. Total chiller current is displayed as shown below:

If the micro is programmed for CURRENT FEEDBACK NONE, no current display will appear.

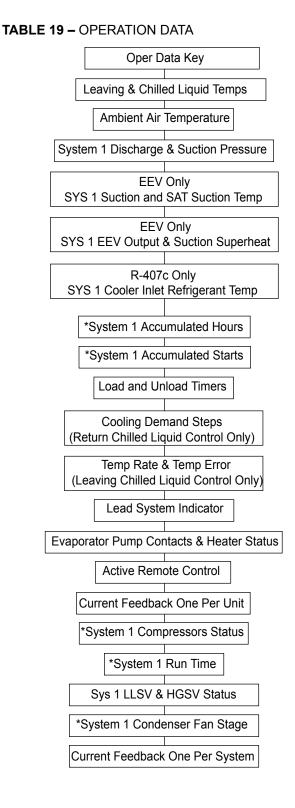
The preceding five messages will appear sequentially, first for system 1, then for system 2.

The first message indicates the system and the associated compressors which are running.

The second message indicates the system run time in days – hours – minutes – seconds. Please note that this is not accumulated run time but pertains only to the current system cycle.

The third message indicates the system, and whether the liquid line solenoid or EEV pilot solenoid and hot gas solenoid are being turned on by the microboard.

The fourth message indicates what stage of condenser fan operation is active.


See the section on Condenser Fan Control in the UNIT OPERATION section for more information.

The fifth message displays current as sensed by the optional current feedback circuitry. The display reads out in amps along with the DC feedback voltage from the module. Current is calculated by:

Individual displays will be present for each system, if CURRENT FEEDBACK ONE PER SYSTEM is programmed under the OPTIONS Key. Combined compressor current for each system is displayed.

OPER DATA Quick Reference List

The following table is a quick reference list for information available under the OPER DATA key.

PRINT Key

The PRINT key allows the operator to obtain a printout of real-time system operating data or a history printout of system data at the "instant of the fault" on the last six faults which occurred on the unit. An optional printer is required for the printout.

OPERATING DATA PRINTOUT

Pressing the PRINT key and then OPER DATA key allows the operator to obtain a printout of current system operating parameters. When the OPER DATA key is pressed, a snapshot will be taken of system operating conditions and panel programming selections. This data will be temporarily stored in memory and transmission of this data will begin to the printer. A sample Operating Data printout is shown below. (Note: Not all values are printed for all models.)

YORK INTERNATIONAL CORPORA MILLENNIUM LIQUID CHILLE	
UNIT STATUS 2:04PM 01 JAN 05	
SYS 1NO COOLINGSYS 2COMPRESSORS RUNN	LOAD ING 2
OPTIONS	WATER NDARD EMOTE IQUID MATIC
PROGRAM VALUES DSCH PRESS CUTOUT 395 SUCT PRESS CUTOUT 44 LOW AMBIENT CUTOUT LEAVING LIQUID CUTOUT	PSIG PSIG 25.0 DEGF 36.0
FAN CONTROL ON PRESS240FAN DIFF OFF PRESS80NUMBER OF COMPRESSORSNUMBER OF FANS PER SYSTEM	DEGF SECS PSIG PSIG 6
4 UNIT TRIP VOLTS 3.0 REFRIGERANT TYPE REMOTE UNIT ID PROGRAMMED	R-22 2
UNIT DATA RETURN LIQUID TEMP	58.2 DEGF

53.0 LEAVING LIQUID TEMP DEGF COOLING RANGE 42.0 +/- 2.0 DEGF AMBIENT AIR TEMP 74.8 DEGF LEAD SYSTEM SYS 2 EVAPORATOR PUMP ON EVAPORATOR HEATER OFF ACTIVE REMOTE CONTROL NONE X.X VOLTS UNIT XXX.X AMPS SOFTWARE VERSION C.MMC.03.03 SYSTEM 1 DATA COMP STATUS 1=OFF 2=OFF 3=OFF RUN TIME 0- 0- 0- 0 D-H-M-S SUCTION PRESSURE 66 PSIG DISCHARGE PRESSURE 219 PSIG SUCTION TEMPERATURE 52.8 DEGF SAT SUCTION TEMP 40.0 DEGF SUCTION SUPERHEAT 12.8 DEGF COOLER INLET REFRIG 31.6 DEGF LIQUID LINE SOLENOID OFF OFF HOT GAS BYPASS VALVE CONDENSER FAN STAGES OFF 0.0 % EEV OUTPUT SYSTEM XXX.X AMPS X.X VOLTS DAILY SCHEDULE SMTWTFS *=HOLIDAY MON START=00:00AM STOP=00:00AM TUE START=00:00AM STOP=00:00AM WED START=00:00AM STOP=00:00AM THU START=00:00AM STOP=00:00AM FRI START=00:00AM STOP=00:00AM SAT START=00:00AM STOP=00:00AM HOL START=00:00AM STOP=00:00AM

See Service And Troubleshooting section for Printer Installation information.

HISTORY PRINTOUT

Pressing the PRINT key and then the HISTORY key allows the operator to obtain a printout of information relating to the last 6 Safety Shutdowns which occurred. The information is stored at the instant of the fault, regardless of whether the fault caused a lockout to occur. The information is also not affected by power failures (long-term internal memory battery backup is built into the circuit board) or manual resetting of a fault lock-out.

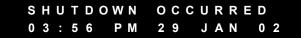
When the HISTORY key is pressed, a printout is transmitted of all system operating conditions which were stored at the "instant the fault occurred" for each of the 6 Safety Shutdowns buffers. The printout will begin with the most recent fault which occurred. The most recent fault will always be stored as Safety Shutdown No. 1. identically formatted fault information will then be printed for the remaining safety shutdowns.

Information contained in the Safety Shutdown buffers is very important when attempting to troubleshoot a system problem. This data reflects the system conditions at the instant the fault occurred and often reveals other system conditions which actually caused the safety threshold to be exceeded.

The history printout is similar to the operational data printout shown in the previous section. The differences are in the header and the schedule information. The daily schedule is not printed in a history print.

One example history buffer printout is shown following. The data part of the printout will be exactly the same as the operational data print so it is not repeated here. The difference is that the Daily Schedule is not printed in the history print and the header will be as follows.

YORK INTERNATIONAL MILLENNIUM LIQUID CHILLER SAFETY SHUTDOWN NUMBER 1 SHUTDOWN @ 3:56PM 29 JAN 05 SYS 1 HIGH DSCH PRESS SHUTDOWN


HISTORY DISPLAYS

The HISTORY key gives the user access to many unit and system operating parameters at the time of a unit or system safety shutdown. When the HISTORY key is pressed the following message is displayed.

While this message is displayed, the \uparrow (UP) arrow key can be used to select any of the six history buffers. Buffer number 1 is the most recent, and buffer number 6 is the oldest safety shutdown that was saved.

After selecting the shutdown number, pressing the ENTER key displays the following message which shows when the shutdown occurred.

Pressing the \downarrow (DOWN) arrow key repeatedly from the DIS-PLAY SAFETY SHUTDOWN NO. X displays the software version.

SOFTWARE VERSION C.MMC.04.01

The \uparrow (UP) and \downarrow (DOWN) arrow keys are used to scroll forward and backward through the history buffer to display the shutdown conditions stored at the instant the fault occurred. The \downarrow (DOWN) arrow key scrolls through the displays in the order they appear below:

Displays the type of fault that occurred.

UNIT TYPE LIQUID CHILLER

Displays the type of chiller; Liquid, Condensing Unit or Heat Pump.

CHILLED LIQUID XXXXX

Displays the chilled liquid type; Water or Glycol.

AMBIENT CONTROL XXXXXXXXXX

Displays the type of Ambient Control; Standard or Low Ambient.

Displays Local or Remote control selection.

Displays the type of chilled liquid control; Leaving or Return.

Displays the type of lead/lag control; Manual System 1, Manual System 2 or Automatic. This is only selectable on 2-system chillers.

Displays the type of fan control; Discharge Pressure or Ambient and Discharge Pressure.

Displays whether Manual Override was Enabled or Disabled.

Displays type of Current Feedback utilized.

Displays whether the optional European Soft Start was installed and selected.

DISCHARGE PRESSURE CUTOUT = XXXX PSIG

Displays the programmed Discharge Pressure Cutout.

Displays the programmed Suction Pressure Cutout.

Displays the programmed Low Ambient Cutout.

Displays the Leaving Liquid Temp. Cutout programmed.

FΑ	Ν	C	N C	Т	RO	L	ΟN	
PRES	SU	RB	Ξ =	Χ	хх	Ρ	SIG	

Displays the programmed Fan On Pressure.

F A N D I F F E R E N T I A L OFF P R E S S U R E = P S I G

Displays the programmed Fan Off Differential.

SYS1 TRIP VOLTS = X.X VOLTS

Displays the programmed High Current Trip Voltage.

LCHLT	=	X X X . X	°F
RCHLT	=	X X X . X	°F

Displays the Leaving and Return chilled Liquid Temperature at the time of the fault.

Displays the programmed Setpoint and Range, if the chiller is programmed for leaving chilled liquid control.

Displays the programmed Setpoint and Range, if the chiller is programmed for return chilled liquid control.

Displays the Ambient Temp. at the time of the fault.

Displays status of the Evaporator Pump and Heater at the time of the fault.

Displays whether Remote Chiller Control was active when the fault occurred.

This is only displayed when the Current Feedback Option is one per unit.

Displays which Compressors were running in the system when the fault occurred.

Displays the system run time when the fault occurred.

Displays the system Suction and Discharge Pressure of the time of the fault.

Displays the System Suction Temp and Saturated Suction Temp when an EEV is installed.

Displays the EEV signal % and Suction Superheat when an EEV is installed.

System Inlet cooler temperature will be displayed only on R-407c units.

Displays whether the System Liquid Line Solenoid or Hot Gas Solenoid was energized at the time of the fault.

JOHNSON CONTROLS

Displays the number of Fan Stages in the system active at the time of the fault.

Displays the system Amperage (calculated approximately) at the time of the fault.

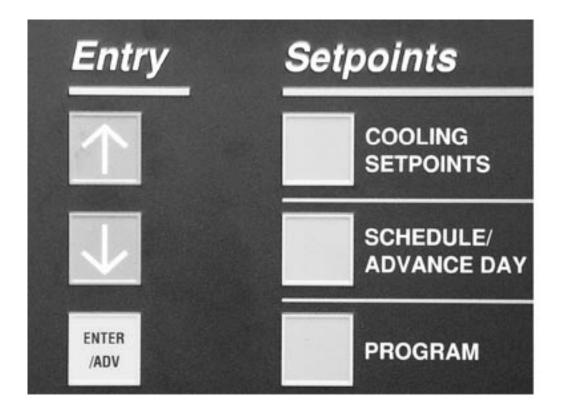
For this message to appear, CURRENT FEEDBACK ONE PER SYSTEM must be programmed under the options key. If the micro is programmed as one CURRENT FEEDBACK ONE PER UNIT under the program key, the display will be the first display prior to the SYS 1 info. If the micro is programmed for CURRENT FEEDBACK NONE, no current display will appear.

Displays for System 1 starting with SYS 1 NUMBER OF COMPS RUNNING X through SYS 1 AMPS = XXX.X VOLTS = X.X will be displayed.

Further explanation of the above displays is covered under the STATUS, OPER DATA, COOLING SET-POINTS, PROGRAM, and OPTIONS keys.

SOFTWARE VERSION

The software version may be viewed by first pressing the HISTORY key and then the \downarrow (DOWN) arrow key.


After pressing the HISTORY key, the display safety shutdown message will be displayed.

After the \downarrow (DOWN) arrow key is pressed, the software version will appear.

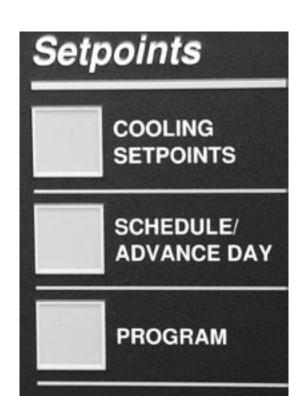
"ENTRY" KEYS

00068VIP

The Entry Keys allows the user to view, change programmed values. The ENTRY keys consist of an ↑ (UP) arrow key, ↓ (DOWN) arrow key, and an ENTER/ADV key.

UP AND DOWN ARROW KEYS

Used in conjunction with the OPER DATA, HISTORY, COOLING SETPOINTS, SCHEDULE/ADVANCE DAY, OPTIONS and CLOCK keys, the \uparrow (UP) and \downarrow (DOWN) arrow keys allow the user to scroll through the various data screens. Refer to the section on "DIS-PLAY/PRINT" keys for specific information on the displayed information and specific use of the \uparrow (UP) and \downarrow (DOWN) arrow keys.


The \uparrow (UP) arrow key, and \downarrow (DOWN) arrow key are also used for programming the control panel such as changing numerical or text values when programming cooling setpoints, setting the daily schedule, changing safety setpoints, chiller options, and setting the clock.

ENTER/ADV key

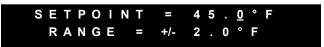
The ENTER/ADV key must be pushed after any change is made to the cooling setpoints, daily schedule, safety setpoints, chiller options, and the clock. Pressing this key "enters" the new values into memory. If the EN-TER/ADV key is not pressed after a value is changed, the changes will not be "entered" and the original values will be used to control the chiller.

Programming and a description on the use of the \uparrow (UP) arrow key, and \downarrow (DOWN) arrow, and ENTER/ADV keys are covered in detail under the SETPOINTS, and UNIT keys.

"SETPOINTS" KEYS

00069VIP

Programming of the cooling setpoints, daily schedule, and safeties is accomplished by using the keys located under the SETPOINTS section.


The three keys involved are labeled COOLING SETPOINTS, SCHEDULE/ADVANCE DAY, and PROGRAM.

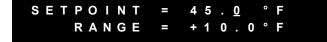
Following are instructions for programming the respective setpoints. The same instruction should be used to view the setpoints with the exception that the setpoint will not be changed.

COOLING SETPOINTS

The Cooling Setpoint and Range can be programmed by pressing the COOLING SETPOINTS key. The cooling mode (leaving chilled liquid or return chilled liquid) will be displayed for a few seconds, and the setpoint display entry screen will appear.

LEAVING CHILLED LIQUID CONTROL

The above message shows the current chilled water temperature SETPOINT at 45.0°F (notice the cursor positioned under the number 0). Pressing either the \uparrow (UP) or \downarrow (DOWN) arrow will change the setpoint in .5°F increments. After using the \uparrow (UP) or \downarrow (DOWN) arrow keys to adjust to the desired setpoint, the ENTER/ADV key must be pressed to enter this number into memory and advance to the RANGE SETPOINT.


Entry of the setpoint will be indicated by the cursor moving under the current RANGE setpoint. The \uparrow (UP) and \downarrow (DOWN) arrow keys are used to set the RANGE, in .5 °F increments, to the desired RANGE setpoint. After adjusting the setpoint, the ENTER/ADV key must be pressed to enter the data into memory.

Notice that the RANGE was programmed for +/- X.X° F. This indicates the SETPOINT to be in the *center* of the control range. If the control mode has been programmed for RETURN LIQUID control, the message below would be displayed in place of the previous message.

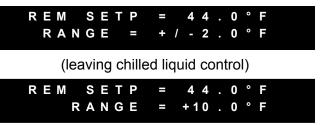
Unit Controls

When in leaving chilled liquid temperature control, the micro will attempt to control the leaving water temperature within the temperature range of the setpoint + or - the range. In the above example, control will be in the range of $43 - 47^{\circ}$ F.

RETURN CHILLED LIQUID CONTROL

In return chilled liquid control, the range no longer has a +/- X.X °F, but only a + X.X °F RANGE setpoint. This indicates that the setpoint is not centered within the RANGE but could be described as the bottom of the control range. A listing of the limits and the programmable values for the COOLING SETPOINTS are shown in Table 20.

The SETPOINT and RANGE displays just described were based on LOCAL control. If the unit was programmed for REMOTE control (under the OPTIONS key), the above programmed setpoints would have no effect.


When in return chilled liquid temperature control, the micro will turn all compressors off at setpoint and will turn compressors on as return chilled liquid temperature rises. All compressors will be on at setpoint + the range. If the range equals the temperature drop across the evaporator when fully loaded, the leaving chilled liquid temperature will remain near the setpoint + or - a few degrees as the chiller loads and unloads according to return chilled liquid temperature.

Both LEAVING and RETURN control are described in detail under the section on CAPACITY CONTROL.

REMOTE SETPOINT CONTROL

Pressing the COOLING SETPOINTS key a second time will display the remote setpoint and cooling range. This display automatically updates about every 2 seconds. Notice that these setpoints are not "locally" programmable, but are controlled by a remote device such as an ISN control, remote reset option board, or remote PWM signal. These setpoints would only be valid if the unit was operating in the REMOTE mode.

The follwing messages illustrate both leaving chilled liquid control and return chilled liquid control respectively.

(return chilled liquid control)

The low limit, high limit, and default values for the keys under "SETPOINTS" are listed in Table 20.

Pressing the COOLING SETPOINTS a third time will bring up the display that allows the Maximum EMS-PWM Temperature Reset to be programmed. This message is shown below.

The Temp Reset value is the maximum allowable reset of the temperature setpoint. The setpoint can be *reset* upwards by the use of a contact closure on the PWM Temp Reset input (CTB1 terminals 13 - 20). The PWM signal may be applied directly on these terminals from an Energy Management System or from the Temperature Reset Option Board. See page 125 for a detailed explanation of this feature.

As with the other setpoints, the \uparrow (UP) arrow and \downarrow (DOWN) arrow keys are used to change the Temp Reset value. After using the \uparrow (UP) and \downarrow (DOWN) arrows to adjust to the desired setpoint, the ENTER/ADV key must be pressed to enter this number into memory.

SCHEDULE/ADVANCE DAY key

The SCHEDULE is a seven day daily schedule that allows one start/stop time per day. The schedule can be programmed Monday through Sunday with an alternate holiday schedule available. If no start/stop times are programmed, the unit will run on demand, providing the chiller is not shut off on a unit or system shutdown. The daily schedule is considered "not programmed" when the times in the schedule are all zeros (00:00 AM).

To set the schedule, press the SCHEDULE/ADVANCE DAY key. The display will immediately show the following display.

SETPOINT KEY	MODE	LOW LIMIT	HIGH LIMIT	DEFAULT
	WATER COOLING	40.0°F	**70.0°F	44.0°F
LEAVING CHILLED LIQUID SETPOINT	4.4°C	21.1°C	6.7°C	
GLYCOL COOLING	*10.0°F	**70.0°F	44.0°F	
	-12.2°C	21.1°C	6.7°C	
LEAVING CHILLED LIQUID		1.5°F	2.5°F	2.0°F
CONTROL RANGE		0.8°C	1.4°C	1.1°C
	WATER COOLING	40.0°F	70.0°F	44.0°F
RETURNED CHILLED LIQUID SETPOINT	4.4°C	21.1°C	6.7°C	
GLYCOL COOLING	10.0°F	70.0°F	44.0°F	
	-12.2°C	21.1°C	6.7°C	
RETURN CHILLED LIQUID		4.0°F	20.0°F	10.0°F
CONTROL RANGE		2.2°C	11.1°C	5.6°C
MAX EMS-PWM REMOTE		2°F	40°F	20°F
TEMPERATURE RESET	_	1.0°C	22.0°C	11.0°C

TABLE 20 - COOLING SETPOINTS, PROGRAMMABLE LIMITS AND DEFAULTS

 Refer to Engineering Guide for operation below 30°F (-1.1°C). Alternate thermal expansion valves must be used below 30°F (-1.1°C).

* When using glycol, Leaving Chilled Liquid Setpoint should not be set below 20°F (-6.7°C).

** Do not exceed 55°F (12.8°C) setpoint before contacting the nearest YORK Office for application guidelines.

The line under the $\underline{0}$ is the cursor. If the value is wrong, it may be changed by using the \uparrow (UP) and \downarrow (DOWN) arrow keys until correct. Pressing the ENTER/ADV key will enter the times and then move the cursor to the minute box. The operation is then repeated if necessary. This process may be followed until the hour, minutes, and meridian (AM or PM) of both the START and STOP points are set. After changing the meridian of the stop time, pressing the ENTER/ADV key will advance the schedule to the next day.

Whenever the daily schedule is changed for Monday, all the other days will change to the new Monday schedule. This means if the Monday times are not applicable for the whole week then the exceptional days would need to be reprogrammed to the desired schedule.

To page to a specific day, press the SCHEDULE/*AD*-*VANCE DAY* key until the desired day appears. The start and stop time of each day may be programmed differently using the \uparrow (UP) and \downarrow (DOWN) arrow, and ENTER/ADV keys.

After SUN (Sunday) schedule appears on the display a subsequent press of the SCHEDULE/ADVANCE DAY key will display the Holiday schedule. This is a two part display. The first reads:

The times may be set using the same procedure as described above for the days of the week. After changing the meridian of the stop time, pressing the ENTER/ADV key will advance the schedule to the following display:

The line below the empty space next to the S is the cursor and will move to the next empty space when the ENTER/ADV key is pressed. To set the Holiday, the cursor is moved to the space following the day of the week of the holiday and the \uparrow (UP) arrow key is pressed. An * will appear in the space signifying that day as a holiday. The * can be removed by pressing the \downarrow (DOWN) arrow key.

The Holiday schedule must be programmed weekly –once the Holiday schedule runs, it will revert to the normal daily schedule.

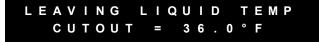
PROGRAM KEY

There are several operating parameters under the PRO-GRAM key that are programmable. These setpoints can be changed by pressing the PROGRAM key, and then the ENTER/ADV key to enter *Program Mode*. Continuing to press the ENTER/ADV key will display each operating parameter. While a particular parameter is being displayed, the \uparrow (UP) and \downarrow (DOWN) arrow keys can be used to change the value. After the value is changed, the ENTER/ADV key must be pressed to enter the data into memory. Table 27 shows the programmable limits and default values for each operating parameter.

Following are the displays for the programmable values in the order they appear:

DISCHARGE PRESSURE CUTOUT is the discharge pressure at which the system will shutdown as monitored by the *optional* discharge transducer. This is a software shutdown that acts as a backup for the mechanical high pressure switch located in the refrigerant circuit. The system can restart when the discharge pressure drops 40 PSIG (2.76 BARG) below the cutout point.

If the optional discharge pressure transducer is not installed, this programmable safety would not apply. It should be noted that every system has a *mechanical* high pressure cutout that protects against excessive high discharge pressure regardless of whether or not the optional discharge pressure is installed.


The SUCTION PRESSURE CUTOUT protects the chiller from an evaporator freeze-up. If the suction pressure drops below the cutout point, the system will shut down. Typically, the cutout should be set to 44 PSIG (3.03 Bars) form water cooling.

There are some exceptions when the suction pressure is permitted to temporarily drop below the cutout point. Details are explained under the topic of SYSTEM SAFETIES.

The LOW AMBIENT TEMP CUTOUT allows the user to select the chiller outside ambient temperature cutout point. If the ambient falls below this point, the chiller will shut down. Restart can occur when temperature rises 2°F (1.11°C) above the cutout setpoint.

The LEAVING LIQUID TEMP CUTOUT protects the chiller from an evaporator freeze-up. Anytime the leaving chilled liquid temperature drops to the cutout point, the chiller shuts down. Restart will be permitted when the leaving chilled liquid temperature rises 2°F (1.11°C) above the cutout setpoint.

When water cooling mode is programmed (OPTIONS key), the value is fixed at 36.0°F (2.22°C) and cannot be changed. Glycol cooling mode can be programmed to values listed in Table 20.

ΑΝΤΙ	R	Ε	С	Y	С	L	Ε	Т	Μ	Ε	R	
	=	6	0	0		S	EC					

The programmable anti-recycle timer assures that systems do not short cycle, and the compressor motors have sufficient time to dissipate heat after a start. This timer is programmable under the PROGRAM key between 300 - 600 seconds. Whenever possible, to reduce cycling and motor heating, the anti-recycle timer should be adjusted as high as possible. The programmable anti-recycle timer starts the timer when the first compressor in a system starts. The timer begins to count down. If all the compressors in the circuit cycle off, a compressor within the circuit will not be permitted to start until the anti-recycle timer has timed out. If the lead system has run for less than 5 minutes, 3 times in a row, the anti-recycle timer will be extended to 10 minutes, if currently programmed for < 10 minutes.

The Fan Control On-Pressure is the programmed pressure value that is used to stage the condenser fans on, in relation to discharge pressure. Refer to Condenser Fan Control in the UNIT OPERATION section and Tables 24 - 27,

The microprocessor will not allow programming the "FAN CONTROL ON PRESSURE" minus the "FAN CONTROL DIFFERENTIAL OFF PRESSURE" below 160PSIG. This assures discharge pressure does not drop too low.

The Fan Differential Off Pressure is the programmed differential pressure value that is used to stage the condenser fans off, in relation to discharge pressure. Refer to Condenser Fan Control in the UNIT OPERATION section and Tables 24 - 27.

The microprocessor will not allow programming the "FAN CONTROL ON PRESSURE" minus the "FAN CONTROL DIFFERENTIAL OFF PRESSURE" below 160 PSIG. This assures discharge pressure does not drop too low.

ΤΟΤΑΙ NUMBER OF COMPRESSORS 2

The TOTAL NUMBER OF COMPRESSORS is the total quantity of compressors in the chiller, and determines the stages of cooling available. This must be programmed for "2".

This MUST be programmed correctly to assure proper chiller operation.

A single system chiller MUST have a jumper between terminals 13 - 17 on terminal block CTB1. If the jumper is not installed, the unit will act as a 2-system chiller. The jumper is only checked by the micro at unit power-up. If the jumper is removed, power must be removed and re-applied to register the change in memory.

This MUST be programmed correctly to assure proper chiller operation.

Depending on the option, the trip voltage for a specific system or unit high current trip can be programmed. On a single system chiller, either option performs the same function. It also calibrates the current readout under the OPER DATA key. The approximate programmed value is calculated using the following formulas:

SYSTEM TRIP VOLTS

For individual system high current trip programming on chillers:

- Add the sum of the compressor and fan RLA's in the system
- Multiply the sum by 1.25
- Divide by 225A
- The resulting voltage is the value that should be programmed

For example, if fan and compressor RLA's total 100A:

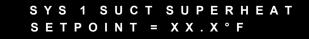
$$\frac{5V \times 100A}{225A} \times 1.25 = \frac{625VA}{225A} = 2.8V$$

The programmed value will be 2.8V. A similar calculation and programming will be necessary for the other system in a 2-system chiller.

UNIT TRIP VOLTS

For total chiller high current trip programming on 460VAC chillers:

- Add the sum of all the the compressor and fan RLA's in the chiller.
- Multiply the sum by 1.25
- Divide by 225A
- The resulting voltage is the value that should be programmed.


For example, if fan and compressor RLA's total 180A:

$$\frac{5V \times 180A}{225A} \times 1.25 = \frac{1125VA}{225A} = 5.0V$$

The programmed value will be 5.0V.

REMOTE UNIT ID PROGRAMMED = X

When communications is required with a BAS or OptiView Panel, individual unit IDs are necessary for communications with specific chillers on a single RS-485 line. ID 0-7 is selectable.

This messages only appears and is programmable when EEV is selected as the expansion valve type in the Service Mode. EEV must only be selected when an EEV is installed. Superheat is programmable between 10°F - 15°F. A setpoint of 12°F - 15°F is recommended.

PROGRAM VALUE	MODE	LOW LIMIT	HIGH LIMIT	DEFAULT
DISCHARGE PRESSURE CUTOUT		200 PSIG	399 PSIG	395 PSIG
	13.8 BARG	27.5 BARG	27.2 BARG	
	WATER COOLING	44.0 PSIG	70.0 PSIG	44.0 PSIG
SUCTION PRESSURE CUTOUT	3.03 BARG	4.83 BARG	3.03 BARG	
GLYCOL COOLING	20.0 PSIG	70.0 PSIG	44.0 PSIG	
	1.38 BARG	4.83 BARG	3.03 BARG	
	STANDARD AMBIENT	25.0°F	60.0°F	25.0°F
LOW AMBIENT TEMP. CUTOUT	-3.9°C	15.6°C	-3.9°C	
LOW AMBIENT	0°F	60.0°F	25.0°F	
	-17.8°C	15.6°C	-3.9°C	
	WATER COOLING			36°F
LEAVING CHILLED LIQUID	WATERCOOLING		2.2°C	
TEMP. CUTOUT	GLYCOL COOLING	8.0°F	36.0°F	36.0°F
	-13.3°C	2.2°C	2.2°C	
ANTI-RECYCLE TIMER	—	300 SEC.	600 SEC.	600 SEC.
FAN CONTROL ON PRESSURE	_	225 PSIG	260 PSIG	240 PSIG
	15.5 BARG	17.9 BARG	16.5 BARG	
FAN DIFFERENTIAL OFF PRESSURE	_	50 PSIG	100 PSID*	80 PSID
		3.45 BARG	6.89 BARG*	5.52 BARG
TOTAL NUMBER OF COMPRESSORS	SINGLE SYSTEM	2	3	3
CURRENT FEEDBACK				
UNIT/SYSTEM TRIP VOLTS	OPTION ENABLED	0.5	4.5	2
ONE PER UNIT				_
REMOTE UNIT ID	—	0	7	0
SYSTEM 1 SUPERHEAT SETPOINT	EEV	10.0°F	15.0°F	12.0°F
STSTEW TSUFERHEAT SETPOINT	5.5°C	8.3°C	6.6°C	

TABLE 21 - PROGRAM KEY LIMITS AND DEFAULTS

^{*} The minimum discharge pressure allowed is 160 PSIG. The fan differential Off Pressure will be lowered to prevent going below 160 PSIG based on where the fan control On Pressure is programmed.

TABLE 22 – SETPOINTS QUICK REFERENCE LIST

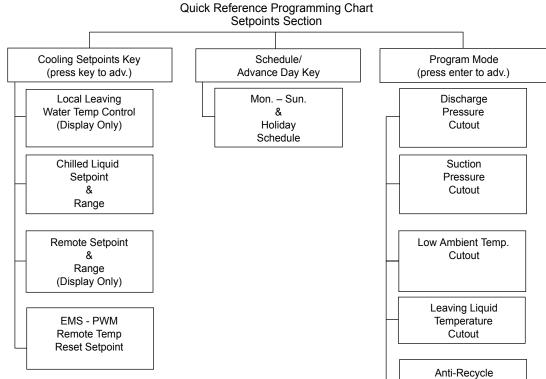
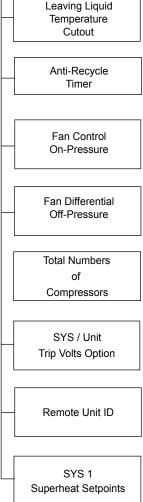



Table 17 provides a quick reference of the setpoints list for the Setpoints Keys.

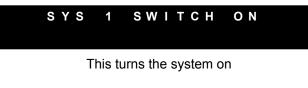
LD07404a

7

00070VIP

"UNIT" KEYS

OPTIONS KEY


There are many user programmable options under the OPTIONS key. The OPTIONS key is used to scroll through the list of options by repeatedly pressing the OPTIONS key. After the selected option has been displayed, the \uparrow (UP) and \downarrow (DOWN) arrow keys are then used to change that particular option. After the option is changed, the ENTER/ADV key must be pressed to enter the data into memory. Table 23 shows the programmable options. Following are the displays in the order they appear:

Option 1 – Language:

English, Spanish, French, German, and Italian can be programmed.

Option 2 – System Switches:

This turns the system off

Turning a system off with its system switch allows a pumpdown to be performed prior to shutdown.

Option 3 – Chilled Liquid Cooling Type:

The chilled liquid is water. The Cooling Setpoint can be programmed from 40°F to 70°F (4.4°C to 21.1°C)

The chilled liquid is glycol. The Cooling Setpoint can be programmed from 10°F to 70°F (-12.2°C to 21.1°C).

Option 4 – Ambient Control Type:

AMBIENT CONTROL STANDARD

The low ambient cutout is adjustable from 25°F to 60°F (-3.9°C to 15.6°C). or

The low ambient cutout is programmable down to 0°F (-17.8°C). A low ambient kit MUST be installed for this option to be chosen. If the kit is NOT installed, and low ambient is selected, low pressure faults and compressor damage may occur.

Option 5 – Local/Remote Control Type:

When programmed for LOCAL, an ISN or RCC control can be used to monitor only. The micro panel will operate on locally programmed values and ignore all commands from remote devices, or through the RS-485 inputs. The chiller will communicate and send data to the remote monitoring devices.

or

LOCAL/REMOTE MODE REMOTE

This mode should be selected when an ISN or RCC control is to be used to control the chiller. This mode will allow the ISN to control the following items: Remote Start/Stop, Cooling Setpoint, Load Limit, and History Buffer Request. If the unit receives no valid ISN transmission for 5 minutes, it will revert back to the locally programmed values.

Option 6 – Unit Control Mode:

CONTROL MODE RETURN LIQUID

Unit control is based on return or leaving chilled liquid temp. Only leaving temp control mode should be used. or

CONTROL MODE LEAVING LIQUID

Option 7 – Display Units:

This mode displays system operating values in Imperial units of °F or PSIG.

OT DISPLAY UNITS SI

This mode displays system operating values in Scientific International Units of °C or BARG.

Option 8 – Lead/Lag Type (two system units only):

LEAD/LAG CONTROL MANUAL SYS 1 LEAD

SYS 1 selected as lead compressor. SYS 1 lead option MUST be chosen on single system units.

Option 9 – Condenser Fan Control Mode:

Condenser fans are controlled by discharge pressure only. This mode may only be chosen when discharge pressure transducers are installed.

JOHNSON CONTROLS

Condenser fans are controlled by ambient temperature and discharge pressure. This mode must be chosen if the discharge pressure transducers are **not** installed.

Option 10 – Manual Override Mode:

This option allows overriding of the daily schedule that is programmed. MANUAL OVERRIDE MODE – DIS-ABLED indicates that override mode has no effect.

or

Manual Override Mode is enabled. This is a service function and when enabled, will allow the unit to start when shut down on the daily schedule. It will automatically be disabled after 30 minutes.

Option 11 – Current Feedback Options In-stalled:

This mode should be selected when the panel is not equipped with current sensing capability.

or

This mode should be selected when an optional 2ACE Module is installed to allow combined current monitoring of all systems by sensing current on the incoming line. Current input is to J8-5 of the micro. On a single system chiller "per system" and "per unit" performs the same function. Either may be selected.

This mode should be selected when an optional 2ACE module is installed to allow individual current monitoring of each system.

Option 12 – Soft Start Enable/Disable:

SOFT START DISABLED

This MUST be selected on all chillers.

Option 13 – Unit Type:

The UNIT TYPE message cannot be modified under the unit keys.

"LIQUID CHILLER" must be displayed, or damage to compressors or other components will occur if operated in the HEAT PUMP or CON-DENSING UNIT modes.

If unit type needs to be changed to make the unit a liquid chiller, remove power and then remove the jumper between J4-6 and J4-11. Reapply power to the micropanel and the microprocessor will store the change.

Option 14 – Refrigerant Type:

Refrigerant type R-22 or R-407C may be selected under Service Mode. Refrigerant type is displayed under the Options Key, but is only programmable in Service Mode.

Incorrect programming may cause damage to compressors.

Option 15 – Expansion Valve Type:

EXPANSION VALVE TYPE THERMOSTATIC

Expansion valve type, thermostatic or electronic may be selected under Service Mode. Expansion valve type is displayed under the Options key, but is only programmable in Service Mode. YCAL 0012 - 0032 chillers will typically always be equipped with thermostaic expansion valves.

Incorrect programming may cause damage to compressors.

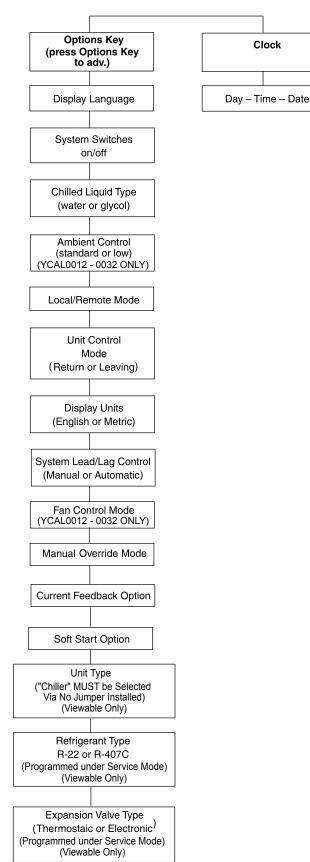
Also see the UNIT KEYS PROGRAMMING QUICK REFERENCE LIST in Table 23.

CLOCK

The CLOCK display shows the current day, time, and date. Pressing the CLOCK key will show the current day, time, and date.

It is important that the date and time be correct, otherwise the daily schedule will not function as desired if programmed. In addition, for ease of troubleshooting via the History printouts, the day, time, and date should be correct. To change the day, time, and date press the CLOCK key. The display will show something similar to the following:

T O D A Y I S <u>F</u> R I 0 8 : 5 1 A M 2 5 J A N 0 2


The line under the <u>F</u> is the cursor. If the day is correct, press the ENTER/ADV key. The cursor will move under the <u>0</u> in 08 hours. If the day is incorrect, press the \uparrow (UP) or \downarrow (DOWN) arrow keys until the desired day is displayed and then press the ENTER/ADV key at which time the day will be accepted and the cursor will move under the first digit of the "2 digit hour". In a similar manner, the hour, minute, meridian, month, day, and year may be programmed, whenever the cursor is under the first letter/numeral of the item. Press the \uparrow (UP) or \downarrow (DOWN) arrow keys until the desired hour, minute, meridian, day, month, and year are displayed. Pressing the ENTER/ADV Key will save the valve and move the cursor on to the next programmable variable.

Jumper J11 on the microboard must be set to the "CLKON" position to turn on the clock. If this is not done, the clock will not function.

TABLE 23 - UNIT KEYS PROGRAMMING QUICK REFERENCE LIST

Quick Reference Programming Chart Unit Keys Section

UNIT OPERATION

CAPACITY CONTROL

To initiate the start sequence of the chiller, all run permissive inputs must be satisfied (flow/remote start/stop switch), and no chiller or system faults exist.

The first phase of the start sequence is initiated by the Daily Schedule Start or any Remote Cycling Device. If the unit is shut down on the daily schedule, the chilled water pump microboard contacts (TB5 3-4) will close to start the pump when the daily schedule start time has been reached. Once flow has been established and the flow switch closes, capacity control functions are initiated, if the remote cycling contacts wired in series with the flow switch are closed.

It should be noted that the chilled water pump contacts (TB5 3-4) are not required to be used to cycle the chilled water pump. However, in all cases the flow switch must be closed to allow unit operation.

The control system will evaluate the need for cooling by comparing the actual leaving or return chilled liquid temperature to the desired setpoint, and regulate the leaving or return chilled liquid temperature to meet that desired setpoint.

SUCTION PRESSURE LIMIT CONTROLS

The anticipatory controls are intended to prevent the unit from ever actually reaching a low-pressure cutout. Loading is prevented, if the suction pressure drops below 1.15 x suction pressure cutout. Load may reoccur after suction pressure rises above the unload point and a period of one minute elapses. This control is only operable if the optional suction pressure transducers are installed.

DISCHARGE PRESSURE LIMIT CONTROLS

The discharge pressure limit controls unload a system before it reaches a safety limit due to high load or dirty condenser coils. The micro monitors discharge pressure and unloads a system, if fully loaded, by one compressor when discharge pressure exceeds the programmed cutout minus 15 PSIG. Reloading will occur when the discharge pressure on the affected system drops to 85% of the unload pressure and 10 minutes have elapsed.

This control is only applicable if optional discharge pressure transducers are installed.

LEAVING CHILLED LIQUID CONTROL

The setpoint, when programmed for Leaving Chilled Liquid Control, is the temperature the unit will control to within +/- the (control) cooling range. The Setpoint High Limit is the Setpoint plus the Cooling Range. The Setpoint Low Limit is the Setpoint minus the Cooling Range. FIG. 11 should be utilized to aid in understanding the following description of Leaving Chilled Liquid Control.

If the leaving chilled liquid temperature is above the Setpoint High Limit, the lead compressor on the lead system will be energized along with the liquid line solenoid. Upon energizing any compressor, the 60 second Anti-Coincidence timer will be initiated to prevent multiple compressors from turning on.

If after 60 seconds of run-time the leaving chilled liquid temperature is still above the Setpoint High Limit, the next compressor in sequence will be energized. Additional compressors will be energized at a rate of once every 60 seconds if the chilled liquid temperature remains above the Setpoint High Limit and the chilled liquid temperature is dropping less than 3°F/min. The lag system will not be allowed to start a compressor until the lead system has run for 5 minutes.

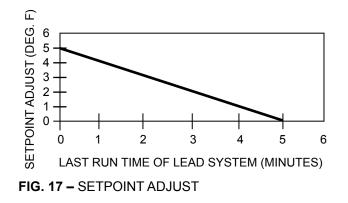
If the chilled liquid temperature falls below the Setpoint High Limit but is greater than the Setpoint Low Limit, loading and unloading do not occur. This area of control is called the control range.

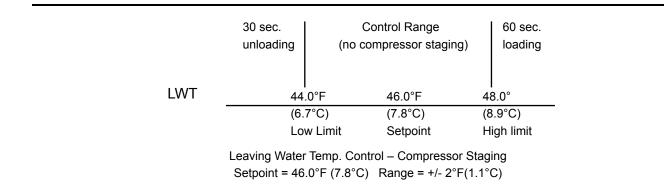
If the chilled liquid temperature drops to between Setpoint Low Limit and 0.5°F (.28°C) below the Setpoint Low Limit, unloading (a compressor turns off) occurs at a rate of 1 every 60 seconds. If the chilled liquid temperature falls to a value greater than 0.5°F (.28°C) below the Setpoint Low Limit but not greater than 1.5°F (.83°C) below the Setpoint Low Limit, unloading occurs at a rate of 30 seconds. If the chilled liquid temperature falls to a value greater than 1.5°F (.83°C) below the Setpoint Low Limit, unloading occurs at a rate of 20 seconds. If the chilled liquid temperature falls below 1°F above the low chilled liquid temperature cutout, unloading occurs at a rate of 10 seconds.

For leaving chilled liquid temperature setpoint and control range combinations that result in the low limit of the control range being below 40.0°F, the low limit will be reset to 40.0°F and the difference will be added to the high limit. This will result in a control range the same size as programmed but not allow the unit to run below 40.0°F. This control will not affect glycol chillers.

Hot gas, if present, will be the final step of capacity. Hot gas is energized when only a single compressor is running and LWT<SP. Hot gas is turned off as temperature rises when LWT>SP + CR/2. If temperature remains be-

low the setpoint low limit on the lowest step of capacity, the micro will close the liquid line solenoid or EEV, after turning off hot gas, and pump the system down before turning off the last compressor in a system.


The leaving chilled liquid setpoint is programmable from 40°F to 70°F (4.4°C to 21.1°C) in water chilling mode and from 10°F to 70°F (-12.2°C to 21.1°C) in glycol chilling mode. In both modes, the cooling range can be from +/-1.5°F to +/-2.5°F (+/-.83°C to 1.39°C).leaving chilled liquid control


LEAVING CHILLED LIQUID CONTROL OVERRIDE TO REDUCE CYCLING

To avoid compressor cycling the micro will adjust the setpoint upward temporarily. The last run time of the system will be saved. If the last run time was greater than 5 minutes, no action is to be taken. If the last run time for the lead system was less than 5 minutes, the microprocessor will increase the setpoint high limit according to the chart at right, with a maximum value allowed of 50°F (See FIG. 17).

If adding the setpoint adjust value to the setpoint high limit causes the setpoint high limit to be greater than 50°F, the setpoint high limit will be set to 50°F, and the difference will be added to the setpoint low limit.

Once a system runs for greater than 5 minutes, the setpoint adjust will be set back to 0. This will occur while the system is still running.

LEAVING CHILLED LIQUID SYSTEM COMPRESSOR SEQUENCING

Each compressor in a system will be assigned an arbitary priority number 1, 2. The non-running compressor within a system with the lowest priority number will always be the next compressor to start. The running compressor with priority number 1 will always be the next to shut off. Whenever a compressor is shut off, the priority numbers of all compressors will be decreased by 1 with wrap-around. This control scheme assures the same compressor does not repeatedly cycle on and off.

RETURN CHILLED LIQUID CONTROL (Should not be used on Single System Chillers)

ANTI-RECYCLE TIMER

The programmable anti-recycle timer assures that systems do not cycle. This timer is programmable under the PROGRAM key between 300 - 600 seconds. Whenever possible, to reduce cycling and motor heating, the antirecycle timer should be adjusted to 600 seconds. The programmable anti-recycle timer starts the timer when the first compressor in a system starts. The timer begins to count down. If all of the compressors in a circuit cycle off, a compressor within the circuit will not be permitted to start until the anti-recycle timer has timed out. If the lead system has run for less than 5 minutes, 3 times in a row, the anti-recycle timer will be extended to 10 minutes.

ANTI-COINCIDENCE TIMER

This timer is not present on single-system units. Two timing controls are present in software to assure compressors within a circuit or between systems, do not start simultaneously. The anti-coincidence timer assures there is at least a one minute delay between system starts on 2-circuit systems. This timer is NOT programmable. The load timers further assure that there is a minimum time between compressor starts within a system.

EVAPORATOR PUMP CONTROL

The evaporator pump dry contacts (CTB2 – terminals 23 - 24) are energized when any of the following conditions are true:

- 1. Low Leaving Chilled Liquid Fault
- 2. Any compressor is running
- 3. Daily Schedule is not programmed OFF and Unit Switch is ON

The pump will not run if the micro panel has been powered up for less than 30 seconds or if the pump has run in the last 30 seconds to prevent pump motor overheating.

EVAPORATOR HEATER CONTROL

The evaporator heater is controlled by ambient air temperature. When the ambient temperature drops below 40°F (4.4°C) the heater is turned on. When the temperature rises above 45°F (7.2°C) the heater is turned off. An under voltage condition will keep the heater off until full voltage is restored to the system.

PUMPDOWN CONTROL

Each system has a pump-down feature upon shut-off. Manual pumpdown from the keypad is not possible. On a non-safety, non-unit switch shutdown, all compressors but one in the system will be shut off. The LLSV or EEV will also be turned off. The final compressor will be allowed to run until the suction pressure falls below the cutout, or for 180 seconds, whichever comes first. The EEV pilot solenoid is also used as a low superheat safety device when the EEV is selected as the expansion valve type. While the system is running and not in a pumpdown mode, the EEV pilot solenoid will close if the suction superheat falls below 4°F. The EEV pilot solenoid will open again when the superheat rises above 7.0°F. This safety device is ignored for the first 30 seconds of system run time. If the EEV pilot solenoid is closed 10 times in 2 minutes on the safety device, the low superheat safety will be triggered.

ELECTRONIC EXPANSION VALVE (EEV)

General

The EEV is optional. When the EEV option is installed, it is programmed under Service Mode, and the OPTION keys, which instructs the micro to control the associated outputs.

The EEV controller in the micro is a PI controller. The integration time is fixed while gain scheduling varies the proportional gain based on the superheat error. As the superheat gets smaller, the proportional gain gets smaller.

The output of the PI controller may be viewed on the display and printouts as the EEV output percentage. This output % is converted to a PWM signal that is used to control the EEV. It can over and under drive the heat motor for faster valve response. This PWM output is the percentage of a 1 second period that the 24VAC heat motor power signal is energized.

MOP Feature

The controller has an MOP feature that overrides the superheat control when the MOP setpoint is exceeded. This is generally only active during hot water starts. The MOP setpoint is 60°F saturated suction temp.

The MOP feature is also used to prevent undershoot when the suction temperature of a system being started is much higher than the return water temperature. This provides better start-up superheat control for high ambient, low water temp start-ups when the superheat measurement is high due to a warm suction line.

Valve Preheat

The heat motor is pre-heated for moderate and low ambient standby conditions. When the ambient is below 25° F, the heat motor is preheated to 25%. Between 25 and 50° F, the preheat is ramped from 25% to 0% linearly, preheat at 50° F and above is 0%.

Inputs

Two external inputs to the micro are used to control the superheat. These inputs are the suction temperature sensor input and the suction pressure transducer input.

Outputs

Two output signals are fed to the EEV. The first controls the EEV pilot solenoid portion of the valve and is 115VAC.

The second output is the EEV PWM signal which feeds the heat motor. The signal will be a 24VAC pulsed signal that is fed to the valve heat motor within a 1 second period. This 24VAC signal can be fed to the motor 0% to 100% of the 1-second period. The signal is measured in terms of watts with 100% equating to 30W, 50% to 15W, etc.

The EEV PWM signal is used to overdrive the valve for faster response. It also allows the valve to stabilize and control superheat more accurately. This feature is especially valuable at start and during transients when valve overfeed could cause liquid to be fed to the compressor.

Program

The superheat setpoint is programmable under the PRO-GRAM key. Superheat may be programmed for 10°F to 15°F, with 12°F as the default. It is recommended that a 12°F to 15°F setpoint be used for most applications.

Safeties

Two safeties are associated with the EEV, the low superheat safety and the sensor fault safety. Details are outlined in the System Safeties section.

CONDENSER FAN CONTROL (YCAL0012 – YCAL0032 CHILLERS)

Condenser fan operation must be programmed with the Options key under "Fan Control." Condenser fan control can be selected for Ambient Temp. and Discharge Pressure, or Discharge Pressure only.

The condenser fan control by "Ambient Temperature and Discharge Pressure" is a feature that is integral to the standard software control. If the optional discharge transducer is not installed, the condenser fans will operate based on outdoor ambient temperature only. See Table 24.

The condenser fan control by "Discharge Pressure" is a feature that can be selected if the discharge pressure transducer is installed and fan recycling is not a concern. Fan control by discharge pressure will work according to Table 23. The fan control on-pressure and fan differential off-pressure are programmable under the PROGRAM key.

A low ambient kit MUST be installed when "AMBIENT CONTROL LOW AMBIENT" is selected under the OP-TIONS key.

<u>!</u>
WARNING

Compressor damage could occur if programming does not match installed hardware.

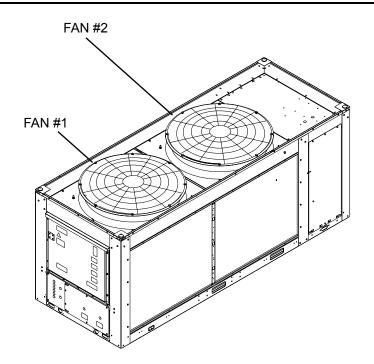

STANDARD CONDENSER FAN CONTROL - YCAL0012 - YCAL0032

TABLE 24 -YCAL0012 - YCAL0032 CONDENSER FAN CONTROL USING OUTDOOR AMBIENT TEMPERA-
TURE AND DISCHARGE PRESSURE (DISCHARGE PRESSURE CONTROLS WILL NOT FUNC-
TION AND FAN CONTROL WILL BE BASED ON AMBIENT TEMPERATURES ONLY, UNLESS THE
OPTIONAL DISCHARGE PRESSURE TRANSDUCER IS INSTALLED).

FAN STAGE	ON	OFF	CONTACTOR	MICROBOARD OUTPUT TB-4	FAN #
0 11 10 2			SYS 1	SYS 1	SYS 1
1	OAT > 25°F (-3.9°C) or DP> Fan Crtl On Press	OAT < 20°F (6.7°C) and DP < Fan Ctrl On Press - (Diff.Press)	8M	4	3
2	OAT > 65°F (18.3°C) or DP > Fan Ctrl On Press +40 PSIG (2.76 Bars)	OAT < 60°F (15.6°C) and DP < Fan Ctrl On Press - (Diff. Press + 40 PSIG (2.76 Bars))	7M & 8M	2 & 4	1 & 3

TABLE 25 - YCAL0012 - YCAL0032 CONDENSER FAN CONTROL USING DISCHARGE PRESSURE ONLY

FAN STAGE	ON	OFF	CONTACTOR	MICROBOARD OUTPUT TB-4	FAN #
0 11 10 2			SYS 1	SYS 1	SYS 1
1	DP > Fan Ctrl On Press	DP < Fan Ctrl On Press - (Diff. Press.)	8M	4	3
2	DP > Fan Ctrl On Press + 40 PSIG (2.76 Bars)	DP < Fan Ctrl On Press - ((Diff. Press.) + 40 PSIG (2.76 Bars))	7M & 8M	2 & 4	1 & 3

LD12211

YCAL0012-0021 LOW AMBIENT FAN CONTROL OPTION

General

The low ambient option consists of a single phase Variable Frequency Drive (VFD) that controls the speed of the first fan (Fan 1) in the fan staging sequence. The VFD is located in the control panel. An example of the VFD location is shown in Fig. 18

FIG. 18 - TYPICAL VFD LOCATION

The VFD will control fan speed based on the liquid temperature of the system. As liquid line temperature rises and falls, the fan speed will operate between minimum and full speed RPM.

As liquid temperature rises, the VFD will ramp the speed of the fan from a minimum speed of about 200 Hz to maximum RPM while attempting to control liquid line temperature between 65-75° F. If the liquid temperature is below 65-75° F, the VFD will shut off the motor even though the VFD is powered by 7M. The VFD control signal is sent from a liquid temperature sensor connected to a condenser coil return bend. The sensor is connected to S1 and COM terminals of the VFD in the control panel. The sensor must always be insulated. The location of the sensor is shown in Fig. 19.

The VFD will not only control fan speed in low ambient conditions, but in all ambients based on the liquid line temperatute. Speed control of the fan will occur whenever the liquid line solenoid is energized.

POTENTIOMETER CONFIGURATION

The VFD is pre-configured from the factory prior to

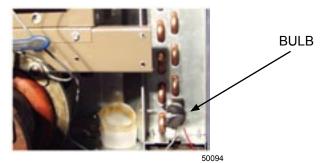
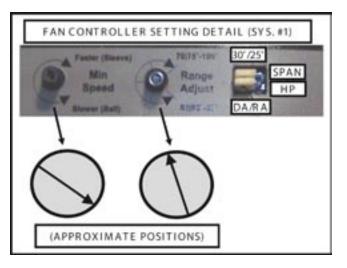



FIG. 19 - LIQUID LINE SENSING BULB LOCATION

shipping and should be ready for operation when the chiller arrives on site. Potentiometers allow adjustment of the minimum speed and for selection of the temperature control range. A quick check of the potentiometer setting is recommended. The potentiometer settings should be in the position shown in Fig. 20.

50095

FIG. 20 - POTENTIOMETER SETTINGS

Wiring

VFD wiring is simple and requires only single phase power in, single phase power out and a 2-wire signal from the liquid line temperature sensor. No start, stop or other alternate power requirements are needed to operate the VFD. Fig. 21 shows the power and control wiring schematically as well as the actual connections.

LD11799A

FIG. 21 – WIRING

PROGRAMMING YCAL0012 - 0021

Condenser fan control type must be programmed under both the OPTIONS and PROGRAM keys when a VFD is installed on the chiller. Under the OPTIONS key, FAN CONTROL must be programmed for DISCHARGE PRESSURE CONTROL only. This will assure condenser fan control of the chiller is solely by discharge pressure, with no ambient control.

Under the PROGRAM Key, the FAN CONTROL ON PRESSURE should be programmed for 240 PSIG and the FAN DIFFERENTIAL OFF PRESSURE must be programmed for 80 PSIG.

Programming as suggested assures the chiller control points for the second fan in the fan staging sequence and the inverter control points are matched for optimum control of the fans at reduced ambient temperatures, assuring superheat and oil control is not compromised. When the chiller and VFD fan control points are programmed properly, the fans will operate as outlined in TABLE 26

TABLE 26 YCAL0012 - 0021 VFD LOW AMBIENT OPTION - CONDENSER FAN CONTROL OPERATION

FAN STAGE	ON	OFF	CONTACTOR	MICROBOARD	FAN #
FAN STAGE		UFF	SYS 1	SYS 1	SYS 1
1: VFD Control	Fan Speed Is A Function Of Liquid Temperature	FAN Will Turn OFF When Liquid	7M	TB3-3	1
(1 fan Variable Speed)	Fan will turn on when liquid temperature is above 65° F	Temperature Drops Below 65°F			
2: 1 Fan VFD Control 2nd Fan Full Speed Under Contactor Control	280 PSIG, Both Fans Will Be Running Full Speed	Discharge Pressure < 200 PSIG (Pressure Is < Fan Control ON Pres- sure of 280 PSIG Minus Fan Differential Pressure of 80 PSIG = 200 PSIG) Fan 1 Will Still Be Running	7M & 8M	TB3-& TB4-8	2&6

YCAL0025-0032 LOW AMBIENT FAN CONTROL OPTION

General

The low ambient option consists of a VFD (Variable Frequency Drive) that controls the speed of the first fan (Fan 1) in the fan staging sequence. The VFD is located on the top of chiller above the compressor section. Examples of the typical VFD location and enclosure mountings are shown in Figs. 22 & 23.

The VFD will control fan speed when only a single fan is running on a system. As discharge pressure rises and falls, the fan speed will be increased from zero RPM to full speed. As discharge pressure continues to rise, the VFD will operate the fan at full speed and the second fan will be brought on in a system, if needed. Whenever the second fan is brought on,

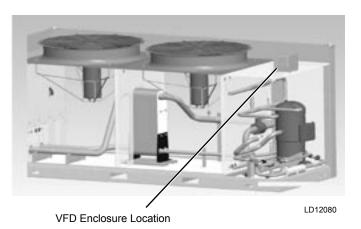


FIG. 22 - TYPICAL VFD ENCLOSURE LOCATIONS

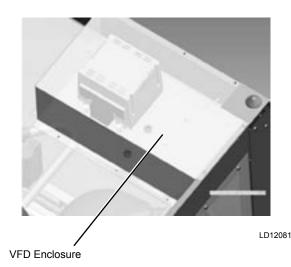


FIG. 23- TYPICAL VFD ENCLOSURE CONFIGURATIONS

the inverter will already be running the first fan at full speed. When discharge pressure falls, the chiller microprocessor will turn the second fan off by de-energizing the fan contactor.

If pressure continues to fall, VFD speed will decrease in an effort to maintain discharge pressure. Speed may drop to the point where the VFD turns the fan completely off or virtually off with a continued drop in pressure.

The VFD control input signal is from the discharge pressure transducer in the respective system. The transducer signal feeds both the chiller microprocessor board and the VFD. The VFD controls the fan speed based on discharge pressure.

The VFD will control the fan speed not only in low ambient conditions, but in all ambients based on discharge pressure. Speed control of the respective system will occur whenever high voltage power is applied to the VFD power inputs through the 7M contactor. The chiller microprocessor will energize the 7M and 10M contactors whenever the system liquid line solenoid is energized.

The VFD controls the speed of the fan based on a discharge pressure setpoint and a differential control range. When a compressor starts in a system, the inverter is activated through the 7M contactor, which is controlled from the respective liquid line solenoid valve control signal. At discharge pressures below 160 PSIG, the VFD will turn the fan off or speed will be reduced to all but small movements in fan rotation.

The pressures indicated in this section describing the VFD control will vary from VFD to VFD. Expect tolerances for the entire pressure range of control to potentially shift -0 PSIG/+15 PSIG.

The VFD will ramp up the speed of the fan as pressure rises above the low end of the speed control range. Throughout the pressure control range, the VFD controls the speed of the fan based on a discharge pressure in the range of approx 160-180 PSIG. At pressures above 180 PSIG, the VFD will run the system fan at full speed.

As pressure drops below 180 PSIG, the VFD will slow the speed of the fan to try to maintain discharge pressure within the control range. The VFD will try to maintain pressure in the range of 160-180 PSIG by raising and lowering the speed of the fan. If pressure drops below 160 PSIG, the VFD will virtually turn the system fan completely off. Some slight fan movement or very slow rotation may be noted, although the fan may appear to stop completely.

CONFIGURATION (JUMPERS AND POTENTIOMETERS)

Each VFD is pre-configured at the factory prior to shipping and should be ready for operation when it arrives onsite. A quick check of the settings is recommended. The jumpers must be in the positions shown in the following Table.

Chillers built in 2005 and early 2006 were configured with J4 IN. This jumper must be removed. Also be sure to check J2 and remove if necessary.

VFD JUMPERS					
J2	REMOVE	_			
J3	IN	_			
J4	REMOVE	—			
J5	IN	—			
J6	IN	_			
J7	IN	—			
J8	IN	_			
J9	IN FOR 60 HZ	REMOVE FOR 50 HZ			

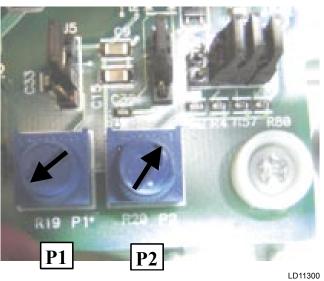
Potentiometer settings are also preset at the factory. The potentiometers should be in the positions shown in the following table. The pots do not have numerical settings and are set according to the arrow positions indicated. DO NOT change the potentiometer settings unless they do not match the positioning of the potentiometers shown in FIG. 24. P1 should be full CW (180 PSIG) and P2 should be full CCW (20 PSIG). Modifying these settings may cause damage to the chiller or control problems.

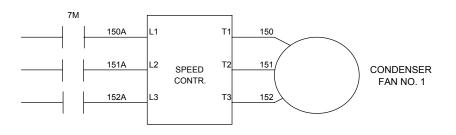
The P1 pot sets the setpoint which is the top end of the control range. This setting is the discharge pressure at which the fan will be operating at full speed. The P2 pot sets the range. This is the range of pressure where the VSD modulates the fan speed from 0 RPM to full speed. The range is subtracted from the setpoint to calculate the 0 RPM pressure.

Wiring

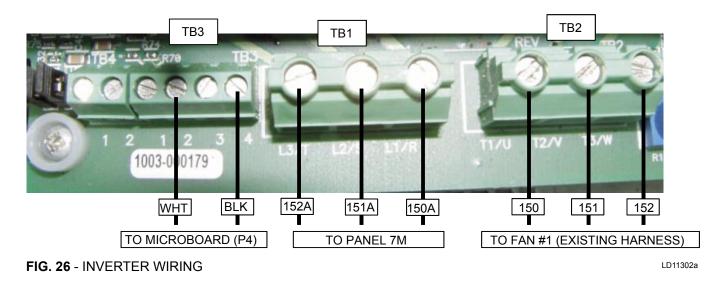
VFD wiring is simple and requires only 3-phase power

POTENTIOMETER SETTINGS			
P1	P2		
180 PSI	25 PSI		




FIG. 24 - POTENTIOMETER SETTINGS

in, 3-phase power out, and a 2-wire signal from the transducer. No start, stop, or other alternate power requirements are needed to run the VFD. FIG's 25 and 26 show the power and control wiring schematically as well as the actual connections. The VFD controlled fan will operate whenever the liquid line solenoid on the respective system is energized


YCAL0025-0032 PROGRAMMING

Condenser fan control type must be programmed under both the OPTIONS and PROGRAM keys when an VFD is installed on the chiller. Under the OPTIONS key, FAN CONTROL must be programmed for DISCHARGE PRESSURE CONTROL only. This will assure the condenser fan control is solely by discharge pressure with no ambient control.

Under the PROGRAM key, the FAN CONTROL ON PRESSURE should be programmed for 240 PSIG and the FAN DIFFERENTIAL OFF PRESSURE should be programmed for 80 PSIG.

LD11301a

Programming as suggested assures the chiller control points for the second fan in the fan staging sequence and the inverter control points are matched for optimum control of the fans at reduced ambient temperatures, assuring superheat and oil control is not compromised. When the chiller and VFD fan control points are programmed properly, the fans will operate as outlined in TABLE 27.

LOAD LIMITING

Load Limiting is a feature that prevents the unit from loading beyond the desired value. Two compressor units can be load limited to 50%. This would allow only 1 compressor per system to run.No other values of limiting are available.

FAN STAGE	ON	OFF	CONTACTOR	MICRO BOARD	FAN #
			SYS 1	SYS 1	SYS 1
1: VFD Control (1 fan Variable Speed)	Fan Speed Is A Function Of Discharge Pressure. When The Liquid Line Solenoid Is Energized. Speed Increases With Pressure	FAN Will Turn Very Slowly or Display Only Slight Movement When Pressure Drops Below 160 PSIG. Fan Will Turn Completely Off When Liquid Line Solenoid Deenergizes	7M	TB3-3	1
2: 1 Fan VFD Control 2nd Fan Full Speed Under Contactor Control	280 PSIG, Both Fans Will Be Running Full Speed	Discharge Pressure < 200 PSIG (Pres- sure Is < Fan Control ON Pressure of 280 PSIG Minus Fan Differential Pressure of 80 PSIG = 180 PSIG)	7M & 8M	2 & 6	TB3- and TB4-8

TABLE 28 – COMPRESSOR OPERATION – LOAD LIMITING

COMPRESSORS IN UNIT	STAGE 1	STAGE 2
2	50%	-

Simultaneous operation of Remote Load Limiting and EMS-PWM Temperature Reset (described on following pages) cannot occur.

COMPRESSOR RUN STATUS

Compressor run status is indicated by closure of contacts at CTB2 – terminals 25 to 26.

ALARM STATUS

System or unit shutdown is indicated by normally-open alarm contacts opening whenever the unit shuts down on a unit fault, locks out on a system fault, or experiences a loss of power to the chiller electronics . System 1 alarm contacts are located at CTB2 – terminals 29 to 30. The alarm contacts will close when conditions allow the unit to operate, or the fault is reset during a loss of power, the contacts will remain open until power is reapplied and no fault conditions exist.

EMS-PWM REMOTE TEMPERATURE RESET

EMS-PWM Remote Temperature Reset is a value that resets the Chilled Liquid Setpoint based on a PWM input (timed contact closure) to the microboard. This PWM input would typically be supplied by an Energy Management System.

A contact closure on the PWM Temp Reset input at CTB1 terminals 13 - 20, will reset the chilled liquid setpoint based on the length of time the contacts remain closed. The maximum temperature reset is achieved

at a contact closure of 11 seconds. This is the longest contact closure time allowed. One second is the shortest time allowed and causes the Chilled Liquid Setpoint to revert back to the Local programmed value. The reset value is always added to the Chilled Liquid Setpoint, meaning that this function never lowers the Chilled Liquid Setpoint below the locally programmed value, it can only reset to a higher value. The microboard must be refreshed between 30 seconds and 30 minutes. Any contact closure occurring sooner than 30 seconds will be ignored. If more than 30 minutes elapse before the next contact closure, the setpoint will revert back to the locally programmed value. The new chilled liquid setpoint is calculated by the following equations:

Setpoint = Local Chilled Liquid Setpoint + °Reset

°Reset = (Contact Closure - 1) x (<u>*Max. Reset Value</u>) 10

Example:

Local Chilled Liquid Setpoint = 45°F (7.22°C). *Max Reset Value = 10°F (5.56°C) Contact Closure Time = 6 Seconds.

(English) (6 sec. - 1) (10°F/10) = 5°F Reset

The new chilled liquid setpoint = $45^{\circ}F + 5^{\circ}F = 50^{\circ}F$. This can be viewed by pressing the Cooling Setpoints key twice. The new value will be displayed as "REM SETP = $50.0^{\circ}F$."

(Metric) (6 sec - 1) * (5.56°C/10) = 2.78°C Reset Cooling Setpoint = 7.22°C + 2.78°C = 10.0°C

The new Reset Cooling Setpoint = $7.22 \degree C + 2.78\degree C = 10\degree C$. This can be viewed by pressing the Cooling Setpoints key twice. The new value will be displayed as "REM SETP = $10.0\degree C$."

* Max Reset Value is the "Max EMS-PWM Remote Temp. Reset" setpoint value described in the programming section under Cooling Setpoints. Programmable values are from 2°F to 40°F (1.11°C to 11.11°C).

BAS/EMS TEMPERATURE RESET OPTION

The Remote Reset Option allows the Control Center of the unit to reset the chilled liquid setpoint using a 0 - 10VDC input, a 4-20mA input, or a contact closure input. The Remote Reset circuit board converts the signals mentioned above into pulse width modulated (PWM) signals which the microprocessor can understand. Whenever a reset is called for, the change may be noted by pressing the Cooling Setpoints key twice. The new value will be displayed as "REM SETP = XXX°F."

The optional Remote Reset option would be used when reset of the chilled liquid setpoint is required and a PWM signal (timed contact closure) cannot be supplied by an Energy Management System. The Remote Temp. Reset Board will convert a voltage, current, or contact signal that is available from an EMS to a PWM signal, and every 80 seconds provide a PWM input to the microboard. Figure 18 shows a diagram of the field and factory electrical connections.

If a **0** - **10VDC** signal is available, it is applied to terminals A+ and A-, and **jumpers are applied to JU4 and JU2** on the reset board. This DC signal is conditioned to a 1 - 11 second PWM output and supplied to the PWM input on the microboard at CTB1 terminals 13 - 20. To calculate the reset chilled liquid setpoint for values between 0VDC and 10VDC use the following formula:

Setpoint = Local Chilled Liquid Setpoint + °Reset

°Reset = $(DC \text{ voltage signal}) \times (*Max Reset Value})$ 10 Example: Local Chilled Liquid Setpoint = 45°F (7.22°C) *Max Reset Value = 20°F (11.11°C) Input Signal = 6VDC (English) °Reset = $6VDC \times 20°F$ = 12°F Reset 10 New Setpoint = 45°F + 12°F = 57°F (Metric) °Reset = $6VDC \times 11. 11°C$ = 6.67°C Reset 10

New Setpoint = 7.22°C + 6.67°C = 13.89°C

If a **4-20mA signal is available**, it is applied to terminals A+ and A- and **jumpers are applied to JU5 and JU3** on the reset board. The mA signal is conditioned to a 1 - 11 second PWM output. The PWM output is then supplied to the PWM input on the microboard at CTB1 terminals 13 - 20. To calculate the chilled liquid setpoint for values between 4mA and 20 mA use the following formula:

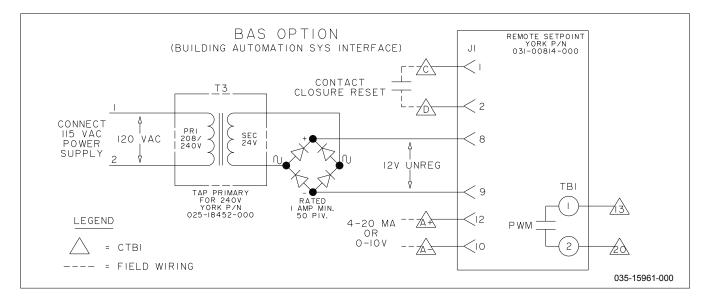
Setpoint = Local Chilled Liquid Setpoint + °Reset

°Reset = (<u>mA signal - 4) x (*Max Reset Value</u>) 16 Example: Local Chilled Liquid Setpoint = 45° (7.22°C) *Max Reset Value = 10°F (5.56°C) Input Signal = 12 mA

(English) °Reset = <u>8mA x 10°F</u> = 5°F Reset 16 Setpoint = 45°F + 5°F = 50°F

(Metric) °Reset = $8mA \times 5.56^{\circ}C$ = 2.78°C Reset 16 Setpoint = 7.22°C + 2.78°C = 10.0°C

A 240-24 Volt Ratio Transformer (T3) is used to derive nominal 12 volt output from the 120 volt supply.


If the **Contact Closure input** is used. The connections are made to terminals C and D and only **jumper JUI must be in place** on the reset board. This input is used when a *single* reset value is needed. When the contacts are closed, the remote temperature reset board will convert this contact closure to a PWM signal that is applied to CTB1 terminals 13 - 20.

To set the PWM output, the contacts must be closed on inputs C - D, and potentiometer R11 (located on the front edge of the PC board) is adjusted to 10VDC as measured at TP3 to terminal 10 on the circuit board. The reset value will be the "Max EMS-PWM Remote Temp. Reset" setpoint value programmed in the SETPOINTS section under the Cooling Setpoints key.

The coil of any added relay used for reset must be suppressed to prevent possible component damage. Use YORK PN 031-00808-000 suppressor.

^{*} Max Reset Value is the "Max EMS-PWM Remote Temp. Reset" setpoint value described in the programming section under Cooling Setpoints. Programmable values are from 2°F to 40°F (1.11°C to 11.11°C).

LD03875a

FIG. 27 – FIELD AND FACTORY ELECTRICAL CONNECTIONS OPTIONAL REMOTE TEMPERATURE RESET BOARD

This page intentionally left blank.

8

SERVICE AND TROUBLESHOOTING

CLEARING HISTORY BUFFERS

The history buffers may be cleared by pressing the HIS-TORY key and then repeatedly pressing the UP arrow key until you scroll past the last history buffer choice. The following message will be displayed:

Pressing the ENTER/ADV key at this display will cause the history buffers to be cleared. Pressing any other key will cancel the operation.

DO NOT CLEAR BUFFERS. Important information may be lost. Contact factory service.

SERVICE MODE

Service Mode is a mode that allows the user to enable or disable all of the outputs (except compressors) on the unit, change chiller configuration setup parameters and view all the inputs to the microboard.

To enter Service Mode, turn the Unit Switch off and press the following keys in the sequence shown; PRO-GRAM, UP ARROW, UP ARROW, DOWN ARROW, DOWN ARROW, ENTER. Service Mode will time out after 30 minutes and return to normal control mode, if the panel is accidentally left in this mode. Otherwise, turning the unit switch on will take the panel out of Service Mode.

SERVICE MODE – OUTPUTS

After pressing the key sequence as described, the control will enter Service Mode permitting the *outputs (except compressors), operating hours, refrigerant type, expansion valve type, and start/hour counters* to be viewed/ modified. The ENTER/ADV key is used to advance through the outputs. Using the \uparrow and \downarrow (UP/DOWN) arrow keys will turn the respective digital output on/off or modify the value.

Following is the order of outputs that will appear as the ENTER/ADV key is pressed:

SYS 1 COMP 1 STATUS TB3-2 IS:
SYS 1 LLSV STATUS TB3-3 IS:
SYS 1 COMP 2 STATUS TB3-4 IS:
SYS 1 HGBP STATUS TB3-6 IS:
SYS 1 FAN OUTPUT 1 TB4-2 IS:
SYS 1 FAN OUTPUT 2 TB4-4 IS:
EVAP HEATER STATUS TB4-10 IS:
SYS 1 ALARM STATUS TB5-1 IS:
EVAP PUMP STATUS TB5-3 IS:
SYS 1 EEV OUTPUT J10 - 1, 2 = :
ANALOG OUTPUT 3 J10 - 5, 6 = :
ANALOG OUTPUT 4 J10 - 7, 8 = :

Each display will also show the output connection on the microboard for the respective output status shown. For example:

This display indicates that the system 1 liquid line solenoid valve is OFF, and the output connection from the microboard is coming from terminal block 3 - pin 2.

Pressing the \uparrow (UP) arrow key will energize the liquid line solenoid valve and "OFF" will change to "ON" in the display as the LLSV is energized. Energizing and de-energizing outputs may be useful during troubleshooting.

SERVICE MODE – CHILLER CONFIGURATION

After the Outputs are displayed, the next group of displays relate to chiller configuration and start/hour counters. Data logging, soft start, refrigerant type, and expansion valve type all must be programmed to match actual chiller configuration.

Soft start, Refrigerant Type, and Expansion Valve Type MUST be properly programmed or damage to compressors and other system components may result. Following is a list, in order of appearance: DATA LOGGING MODE = : DO NOT MODIFY DATA LOGGING TIMER = : DO NOT MODIFY SOFT START REFRIGERANT TYPE EXPANSION VALVE TYPE SYS 1 HOURS SYS 1 STARTS

The last displays shown on the above list is for the accumulated run and start timers for each system. All values can also be changed using the \uparrow (UP) and \downarrow (Down) arrow keys, but under normal circumstances would not be advised. After the last start display, the micro will display the first programmable value under the PROGRAM key.

SERVICE MODE – INPUTS

After entering Service Mode (PROGRAM $\uparrow\uparrow\downarrow\downarrow$), all digital and analog inputs to the microboard can be viewed by pressing the OPER DATA key. After pressing the OPER DATA key, the \uparrow (UP) arrow and \downarrow (DOWN) arrow keys are used to scroll through the analog and digital inputs.

Following is the order of analog and digital inputs that will appear when sequenced with the \downarrow (Down) arrow key:

(analog inputs)

```
SYS 1 *SUCT PRESSURE
            UNIT TYPE
      SYS 1 ** DISCH PRESSURE
SYS 1*** COOLER INLET REFRIG. TEMP.
      SYS 1**** SUCTION TEMP.
        AMBIENT AIR TEMP.
       LEAVING LIQUID TEMP.
       RETURN LIQUID TEMP.
         SYS 1 MTR VOLTS
            (digital inputs)
      PWM TEMP RESET INPUT
         LOAD LIMIT INPUT
      FLOW SW / REM START
              SPARE
      SINGLE SYSTEM SELECT
       SYS 1 MP / HPCO INPUT
```

The analog inputs will display the input connection, the temperature or pressure, and corresponding input voltage such as:

This example indicates that the system 1 suction pressure input is connected to plug 4 - pin 10 (J4-10) on the microboard. It indicates that the voltage is 2.1 volts dc which corresponds to 81 PSIG (5.6 bars) suction pressure.

The digital inputs will display the input connection and ON/OFF status such as:

This indicates that the flow switch/remote start input is connected to plug 9- pin 5 (J9-5) on the microboard, and is ON (ON = +30VDC unregulated input, OFF = 0VDC input on digital inputs).

CONTROL INPUTS/OUTPUTS

Tables 29 through 32 are a quick reference list providing the connection points and a description of the inputs and outputs respectively. All input and output connections pertain to the connections at the microboard.

TABLE 29 - MICROBOARD DIGITAL INPUTS

*J9-1	30VDC Unregulated Supply
J9-2	Unit ON/OFF Switch
J9-3	PWM Temp. Reset -or- Load Limit Stage 2 on 3, 5 & 6 Comp. Units
J9-4	Load Limit Stage 1
J9-5	Flow Switch and Remote Start/Stop -or- Sys 1 Zone Thermostat (Suction Pressure Control YCUL Only)
J9-6	Spare
J9-7	Single System Select (Jumper = Single Sys, No Jumper = Two Sys)
J9-8	CR1 (Sys 1 Motor Protector/High Pressure Cutout)
J9-9	Spare

* The 30 dc unregulated supply is <u>NOT</u> an input. This voltage originates on the microboard and is used to supply the contacts for the digital inputs.

TABLE 31 - MICROBOARD ANALOG INPUTS

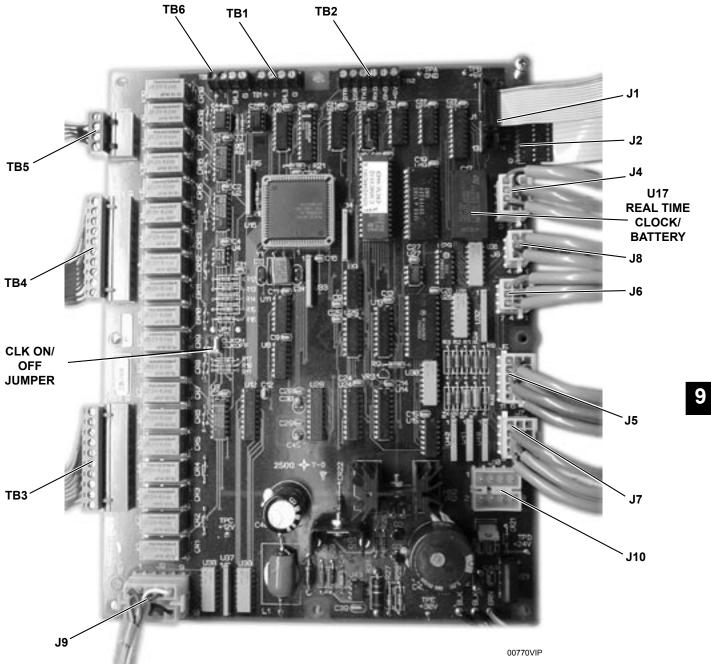

J4-10	SYS 1 Suction Transducer -or-	
	SYS 1 Low Pressure Switch	
J4-11	Unit Type:Chiller = NO Jumper J4-6 to J4-11 YCUL Condensing Unit = Jumper J4-6 to J4-11 (Do NOT Use)	
J4-12	SYS 1 Discharge Pressure Transducer (Optional)	
J5-12	SYS 1 Cooler Inlet Refrigerant Temp. Sensor (R-407C Chiller) SYS 1 Discharge Temp Sensor (R-22 - Optional)	
J5-13	Spare	
J5-14	5-14 SYS 1 Suction Temp. Sensor (EEV Option)	
J5-15	Spare	
J6-7	Ambient Air Temp. Sensor	
J6-8	Leaving Chilled Liquid Temp. Semsor	
J6-9	Return Chilled Liquid Temp. Sensor	
J7-10	J7-10 Spare	
J7-11	Spare	
J7-12	Spare	
J8-5	Unit/SYS 1 Voltage	
J8-6	Spare	

TABLE 30 - MICROBOARD DIGITAL OUTPUTS

TB3-2	SYS 1 Compressor 1	
	SYS 1 Liquid Line Solenoid Valve	
TB3-3	-or-	
	EEV Pilot Solenoid	
TB3-4	SYS 1 Compressor 2	
TB3-5	SYS 1 Compressor 3	
TB3-6	SYS 1 Hot Gas Bypass Valve	
TB3-8	TB3-8 Spare	
TB3-9	Spare	
TB3-10	Spare	
TB4-2	SYS 1 Condenser Fan Output 1	
TB4-4	SYS 1 Condenser Fan Output 2	
TB4-5	SYS 1 Condenser Fan Output 3	
TB4-6	Spare	
TB4-8	Spare	
TB4-9	Spare	
TB4-10	Evaporator Heater	
TB5-1	SYS 1 Alarm	
TB5-2	Spare	
TB5-3	Evporator Pump Starter	

TABLE 32 - MICROBOARD ANALOG OUTPUTS

J10-1/ J10-2	SYS 1 EEV Output
J10-3/ J10-4	Spare
J10-5/ J10-6	Spare
J10-7/ J10-8	Spare


```
FIG. 28 - MICROBOARD LAYOUT
```

CHECKING INPUTS AND OUTPUTS

DIGITAL INPUTS

Refer to the unit wiring diagram. All digital inputs are connected to J9 of the microboard. The term "digital" refers to two states – either on or off. As an example, when the flow switch is closed, 30 volts *DC* will be applied to J9, pin 5 (J9-5) of the microboard. If the flow switch is open, 0 volts *DC* will then be present at J9-5.

Pin 1 of J9 is an *unregulated* 30VDC *source* used to supply the DC voltage to the various user contacts, unit switch, flow switch, etc. This DC source is factory wired to CTB1, terminal 13. Any switch or contact used as a digital input would be connected to this terminal, with the other end connecting to its respective digital input on the microboard. Any time a switch or contact is closed, 30VDC would be applied to that particular digital input. Any time a switch or contact is open, 0VDC would be applied to that particular digital input.

Typically, voltages as high as 34VDC could be measured for the DC voltage on the digital inputs. This voltage is in reference to ground. The unit case should be sufficient as a reference point when measuring digital input voltages.

ANALOG INPUTS – Temperature

Refer to the unit wiring diagram. Temperature inputs are connected to the microboard on plug J6. These *analog* inputs represent varying DC signals corresponding to varying temperatures. All voltages are in reference to the unit case (ground). Following are the connections for the temperature sensing inputs:

Outside Air Sensor

- J6-4 = +5VDC regulated supply to sensor.
- J6-7 = VDC input signal to the microboard. See TABLE 30 for voltage readings that corre spond to specific outdoor temperatures.
- J6-1 = drain (shield connection = 0VDC) Return

TABLE 33 – OUTDOOR AIR SENSOR	
TEMPERATURE/VOLTAGE/	
RESISTANCE CORRELATION	

TEMP°F	VOLTAGE (Signal Input to Return)	TEMP°C
0	0.7	-18
5	0.8	-15
10	0.9	-12
15	1.0	-9
20	1.1	-7
25	1.2	-4
30	1.4	-1
35	1.5	2
40	1.7	4
45	1.8	7
50	2.0	10
55	2.2	13
60	2.3	16
65	2.5	18
70	2.6	21
75	2.8	24
80	2.9	27
85	3.1	29
90	3.2	32
95	3.4	35
100	3.5	38
105	3.6	41
110	3.7	43
115	3.8	46
120	3.9	49
125	4.0	52
130	4.1	54

TABLE 34 - ENTERING/LEAVING CHILLEDLIQUID TEMP. SENSOR, COOLER INLETTEMPERATURE SENSOR, AND SUCTIONTEMPERATURE SENSOR: TEMPERA-TURE/VOLTAGE CORRELATION

VOLTAGE (Signal Input to Return)TEMP°C101.33-12121.39-11141.46-10161.51-9181.58-8201.65-7221.71-6241.78-4261.85-3281.91-2301.98-1322.050342.121362.192382.263402.334422.406442.477462.538482.609502.6510522.7311542.8012562.8613582.9214602.9816623.0517643.1118663.1719683.2320703.2921723.3422743.3923763.4524783.5427			
12 1.39 -11 14 1.46 -10 16 1.51 -9 18 1.58 -8 20 1.65 -7 22 1.71 -6 24 1.78 -4 26 1.85 -3 28 1.91 -2 30 1.98 -1 32 2.05 0 34 2.12 1 36 2.19 2 38 2.26 3 40 2.33 4 42 2.40 6 44 2.47 7 46 2.53 8 48 2.60 9 50 2.65 10 52 2.73 11 54 2.80 12 56 2.86 13 58 2.92 14 60 2.98 16 62 3.05 17 64 3.11 18 66 3.17 19 68 3.23 20 70 3.29 21 72 3.34 22 74 3.39 23 76 3.45 24 78 3.5 26	TEMP°F		TEMP°C
14 1.46 -10 16 1.51 -9 18 1.58 -8 20 1.65 -7 22 1.71 -6 24 1.78 -4 26 1.85 -3 28 1.91 -2 30 1.98 -1 32 2.05 0 34 2.12 1 36 2.19 2 38 2.26 3 40 2.33 4 42 2.40 6 44 2.47 7 46 2.53 8 48 2.60 9 50 2.65 10 52 2.73 11 54 2.80 12 56 2.86 13 58 2.92 14 60 2.98 16 62 3.05 17 64 3.11 18 66 3.17 19 68 3.23 20 70 3.29 21 72 3.34 22 74 3.39 23 76 3.45 24 78 3.5 26	10	1.33	-12
16 1.51 -9 18 1.58 -8 20 1.65 -7 22 1.71 -6 24 1.78 -4 26 1.85 -3 28 1.91 -2 30 1.98 -1 32 2.05 0 34 2.12 1 36 2.19 2 38 2.26 3 40 2.33 4 42 2.40 6 44 2.47 7 46 2.53 8 48 2.60 9 50 2.65 10 52 2.73 11 54 2.80 12 56 2.86 13 58 2.92 14 60 2.98 16 62 3.05 17 64 3.11 18 66 3.17 19 68 3.23 20 70 3.29 21 72 3.34 22 74 3.39 23 76 3.45 24	12		-11
18 1.58 -8 20 1.65 -7 22 1.71 -6 24 1.78 -4 26 1.85 -3 28 1.91 -2 30 1.98 -1 32 2.05 0 34 2.12 1 36 2.19 2 38 2.26 3 40 2.33 4 42 2.40 6 44 2.47 7 46 2.53 8 48 2.60 9 50 2.65 10 52 2.73 11 54 2.80 12 56 2.86 13 58 2.92 14 60 2.98 16 62 3.05 17 64 3.11 18 66 3.17 19 68 3.23 20 70 3.29 21 72 3.34 22 74 3.39 23 76 3.45 24	14	1.46	-10
20 1.65 -7 22 1.71 -6 24 1.78 -4 26 1.85 -3 28 1.91 -2 30 1.98 -1 32 2.05 0 34 2.12 1 36 2.19 2 38 2.26 3 40 2.33 4 42 2.40 6 44 2.47 7 46 2.53 8 48 2.60 9 50 2.65 10 52 2.73 11 54 2.80 12 56 2.86 13 58 2.92 14 60 2.98 16 62 3.05 17 64 3.11 18 66 3.17 19 68 3.23 20 70 3.29 21 72 3.34 22 74 3.39 23 76 3.45 24	16	1.51	-9
22 1.71 -6 24 1.78 -4 26 1.85 -3 28 1.91 -2 30 1.98 -1 32 2.05 0 34 2.12 1 36 2.19 2 38 2.26 3 40 2.33 4 42 2.40 6 44 2.47 7 46 2.53 8 48 2.60 9 50 2.65 10 52 2.73 11 54 2.80 12 56 2.86 13 58 2.92 14 60 2.98 16 62 3.05 17 64 3.11 18 66 3.17 19 68 3.23 20 70 3.29 21 72 3.34 22 74 3.39 23 76 3.45 24	18	1.58	-8
24 1.78 -4 26 1.85 -3 28 1.91 -2 30 1.98 -1 32 2.05 0 34 2.12 1 36 2.19 2 38 2.26 3 40 2.33 4 42 2.40 6 44 2.47 7 46 2.53 8 48 2.60 9 50 2.65 10 52 2.73 11 54 2.80 12 56 2.86 13 58 2.92 14 60 2.98 16 62 3.05 17 64 3.11 18 66 3.17 19 68 3.23 20 70 3.29 21 72 3.34 22 74 3.39 23 76 3.45 24	20	1.65	-7
26 1.85 -3 28 1.91 -2 30 1.98 -1 32 2.05 0 34 2.12 1 36 2.19 2 38 2.26 3 40 2.33 4 42 2.40 6 44 2.47 7 46 2.53 8 48 2.60 9 50 2.65 10 52 2.73 11 54 2.80 12 56 2.86 13 58 2.92 14 60 2.98 16 62 3.05 17 64 3.11 18 66 3.17 19 68 3.23 20 70 3.29 21 72 3.34 22 74 3.39 23 76 3.45 24	22	1.71	-6
28 1.91 -2 30 1.98 -1 32 2.05 0 34 2.12 1 36 2.19 2 38 2.26 3 40 2.33 4 42 2.40 6 44 2.47 7 46 2.53 8 48 2.60 9 50 2.65 10 52 2.73 11 54 2.80 12 56 2.86 13 58 2.92 14 60 2.98 16 62 3.05 17 64 3.11 18 66 3.17 19 68 3.23 20 70 3.29 21 72 3.34 22 74 3.39 23 76 3.45 24	24	1.78	-4
30 1.98 -1 32 2.05 0 34 2.12 1 36 2.19 2 38 2.26 3 40 2.33 4 42 2.40 6 44 2.47 7 46 2.53 8 48 2.60 9 50 2.65 10 52 2.73 11 54 2.80 12 56 2.86 13 58 2.92 14 60 2.98 16 62 3.05 17 64 3.11 18 66 3.17 19 68 3.23 20 70 3.29 21 72 3.34 22 74 3.39 23 76 3.45 24 78 3.5 26	26	1.85	-3
322.050342.121362.192382.263402.334422.406442.477462.538482.609502.6510522.7311542.8012562.8613582.9214602.9816623.0517643.1118663.1719683.2320703.2921723.3422743.3923763.4524	28	1.91	-2
34 2.12 1 36 2.19 2 38 2.26 3 40 2.33 4 42 2.40 6 44 2.47 7 46 2.53 8 48 2.60 9 50 2.65 10 52 2.73 11 54 2.80 12 56 2.86 13 58 2.92 14 60 2.98 16 62 3.05 17 64 3.11 18 66 3.17 19 68 3.23 20 70 3.29 21 72 3.34 22 74 3.39 23 76 3.45 24 78 3.5 26	30	1.98	-1
36 2.19 2 38 2.26 3 40 2.33 4 42 2.40 6 44 2.47 7 46 2.53 8 48 2.60 9 50 2.65 10 52 2.73 11 54 2.80 12 56 2.86 13 58 2.92 14 60 2.98 16 62 3.05 17 64 3.11 18 66 3.17 19 68 3.23 20 70 3.29 21 72 3.34 22 74 3.39 23 76 3.45 24 78 3.5 26	32	2.05	0
382.263402.334422.406442.477462.538482.609502.6510522.7311542.8012562.8613582.9214602.9816623.0517643.1118663.1719683.2320703.2921723.3422743.3923763.4524783.526	34	2.12	1
40 2.33 4 42 2.40 6 44 2.47 7 46 2.53 8 48 2.60 9 50 2.65 10 52 2.73 11 54 2.80 12 56 2.86 13 58 2.92 14 60 2.98 16 62 3.05 17 64 3.11 18 66 3.17 19 68 3.23 20 70 3.29 21 72 3.34 22 74 3.39 23 76 3.45 24 78 3.5 26	36	2.19	2
422.406442.477462.538482.609502.6510522.7311542.8012562.8613582.9214602.9816623.0517643.1118663.1719683.2320703.2921723.3422743.3923763.4524783.526	38	2.26	3
442.477462.538482.609502.6510522.7311542.8012562.8613582.9214602.9816623.0517643.1118663.1719683.2320703.2921723.3422743.3923763.4524783.526	40	2.33	4
462.538482.609502.6510522.7311542.8012562.8613582.9214602.9816623.0517643.1118663.1719683.2320703.2921723.3422743.3923763.4524783.526	42	2.40	6
482.609502.6510522.7311542.8012562.8613582.9214602.9816623.0517643.1118663.1719683.2320703.2921723.3422743.3923763.4524783.526	44	2.47	7
50 2.65 10 52 2.73 11 54 2.80 12 56 2.86 13 58 2.92 14 60 2.98 16 62 3.05 17 64 3.11 18 66 3.17 19 68 3.23 20 70 3.29 21 72 3.34 22 74 3.39 23 76 3.45 24 78 3.5 26	46	2.53	8
522.7311542.8012562.8613582.9214602.9816623.0517643.1118663.1719683.2320703.2921723.3422743.3923763.4524783.526	48	2.60	9
542.8012562.8613582.9214602.9816623.0517643.1118663.1719683.2320703.2921723.3422743.3923763.4524783.526	50	2.65	10
562.8613582.9214602.9816623.0517643.1118663.1719683.2320703.2921723.3422743.3923763.4524783.526	52	2.73	11
582.9214602.9816623.0517643.1118663.1719683.2320703.2921723.3422743.3923763.4524783.526	54	2.80	12
602.9816623.0517643.1118663.1719683.2320703.2921723.3422743.3923763.4524783.526	56	2.86	13
623.0517643.1118663.1719683.2320703.2921723.3422743.3923763.4524783.526	58	2.92	14
643.1118663.1719683.2320703.2921723.3422743.3923763.4524783.526	60	2.98	16
663.1719683.2320703.2921723.3422743.3923763.4524783.526	62	3.05	17
683.2320703.2921723.3422743.3923763.4524783.526	64	3.11	18
703.2921723.3422743.3923763.4524783.526	66	3.17	19
723.3422743.3923763.4524783.526	68	3.23	20
743.3923763.4524783.526	70	3.29	21
76 3.45 24 78 3.5 26	72	3.34	22
78 3.5 26	74	3.39	23
	76	3.45	24
80 3.54 27	78	3.5	26
	80	3.54	27

Liquid & Refrigerant Sensor Test Points

(TABLE 34)

Entering Chilled Liquid Sensor

- J6-6 = +5VDC regulated supply to sensor.
- J6-9 = VDC input signal to the microboard. See TABLE 31 for voltage readings that corre spond to specific liquid temperatures.
- J6-3 = drain (shield connection = 0VDC) Return

Leaving Chilled Liquid Temperature Sensor

- J6-5 = +5VDC regulated supply to sensor.
- J6-8 = VDC input signal to the microboard. See TABLE 31 for voltage readings that corre spond to specific liquid temperatures.
- J6-2 = drain (shield connection = 0VDC) Return

Cooler Inlet Temperature

- J5-12 = VDC input signal to microboard from Sys 1 Cooler Inlet Refrigerant Temp Sensor (R-407c only).
- J5-13 = VDC input signal to microboard from Sys 2 Cooler Inlet Refrigerant Temp Sensor (R-407c only).

Suction Temperature Sensor

- J5-14 = VDC input signal to microboard from Sys 1 Suction Temp Sensor (EEV only).
- J5-15 = VDC input signal to microboard from Sys 2 Suction Temp Sensor (EEV only).

JOHNSON CONTROLS

9

ANALOG INPUTS – Pressure

Refer to the unit wiring diagram. Pressure inputs are connected to the microboard on plugs J4 and J7. These *analog* inputs represent varying dc signals corresponding to varying pressures. All voltages are in reference to the unit case (ground).

System 1 discharge and suction pressures will be connected to J4 of the microboard. System 2 discharge and suction pressure transducers will be connected to J7 of the microboard.

The discharge transducers are optional on all units. If the discharge transducers are not installed, no connections are made to the microboard and the discharge pressure readout on the display would be zero.

The suction pressure transducers are standard on all YCAL's. The suction pressure tranducers have a range of 0 to 200 PSIG. The output will be linear from 0.5VDC to 4.0VDC over the 200 PSIG (13.79 BARG) range.

The discharge transducers have a range from 0 to 400 PSIG. The output will be linear from 0.5VDC to 4.5VDC over the 400 PSIG (27.5 BARG) range. Following is the formula that can be used to verify the voltage output of the transducer. All voltage reading are in reference to ground (unit case).

V = (Pressure in PSIG x .01) + .5 or V = (Pressure in BARG x .145) + .5 where V = dc voltage output Pressure = pressure sensed by transducer

The microboard connections for the Discharge Transducers:

System 1 Discharge Transducer

J4-7 = +5VDC regulated supply to transducer.

- J4-12 =VDC input signal to the microboard. See the formula above for voltage readings that correspond to specific discharge pressures.
- J4-8 = +5VDC return
- J4-9 = drain (shield connection = 0VDC)

System 2 Discharge Transducer

- J7-7 = +5VDC regulated supply to transducer.
- J7-12 =VDC input signal to the microboard. See the formula above for voltage readings that correspond to specific discharge pressures.
- J7-8 = +5VDC return
- J7-9 = drain (shield connection = 0VDC)

The suction transducers have a range from 0 to 200 PSIG (13.79 BARG). The output will be linear from .5VDC to 4.5VDC over the 200 PSIG (13.79 BARG) range. Following is a formula that can be used to verify the voltage output of the transducer. All voltage reading are in reference to ground (unit case).

V = (Pressure in PSIG x .02) + .5 or V = (Pressure in BARG x .29) + .5 where V = dc voltage input to micro

Pressure = pressure sensed by transducer

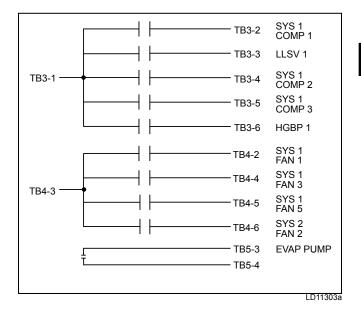
Following are the microboard connections for the Suction Transducer:

System 1 Suction Transducer

J4-5 = +5VDC regulated supply to transducer. J4-10 = VDC input signal to the microboard. See the formula above for voltage readings that correspond to specific suction pressures. J4-1 = +5VDC return J4-2 = drain (shield connection = 0VDC)

If the optional Suction Transducer is not used on the YCAL0012 - YCAL0032, a Low Pressure switch will be used. Following are the microboard connections for the Low Pressure switch.

System 1 Low Pressure Switch


J4-5 = +5VDC regulated supply to LP switch. J4-10 = input signal to the microboard. 0VDC = open switch / +5VDC = closed switch. J4-2 = drain (shield connection = 0VDC)

DIGITAL OUTPUTS

Refer to the unit wiring diagram and FIG. 20. The digital outputs are located on TB3, TB4, and TB5 of the microboard. **ALL OUTPUTS ARE 120VAC** with the exception of TB5-3 to TB5-4. TB5-3 to TB5-4 are the contacts that can be used for an evaporator pump start signal. The voltage applied to either of these terminals would be determined by field wiring.

Each output is controlled by the microprocessor by switching 120VAC to the respective output connection energizing contactors, evaporator heater, and solenoids according to the operating sequence.

120VAC is supplied to the microboard via connections at TB3-1, TB3-7, TB4-3, and TB4-7. FIG. 20 illustrates the relay contact architecture on the microboard.

KEYPAD

The operator keypad is connected to the microboard by a ribbon cable, which is connected to J2 on the microboard.

The integrity of a specific "button" on the keypad can be verified by doing a continuity check across two specific points (or pins), that represent one of twelve "buttons" on the keypad.

TABLE 35 lists the key/pin assignments for the key-pad.

Power to the microboard must be turned off, and the ribbon cable disconnected from the microboard prior to conducting the tests, or component damage may result.

After the ribbon cable is disconnected from microboard, ohmmeter leads are connected to the pins representing the specific "button" to be tested. After connecting the meter leads, the "button" being checked is pressed and a reading of zero ohms should be observed. After releasing the "button," the resistance value should be infinite (open circuit).

Pin 1 is usually identified by a stripe on the ribbon cable.

TABLE 35 - KEYPAD PIN ASSIGNMENT MATRIX

KEYPAD	PIN CONNECTIONS
STATUS	1 TO 5
OPER DATA	1 TO 7
PRINT	1 TO 6
HISTORY	1 TO 8
UP ARROW	2 TO 5
DOWN ARROW	2 TO 7
ENTER/ADV	2 TO 6
COOLING SETPOINTS	2 TO 8
SCHEDULE/ADVANCE DAY	3 TO 5
PROGRAM	3 TO 7
OPTIONS	3 TO 6
CLOCK	3 TO 8

OPTIONAL PRINTER INSTALLATION

The micro panel is capable of supplying a printout of chiller conditions or fault shutdown information at any given time. This allows operator and service personnel to obtain data and system status with the touch of the keypad. In addition to manual print selection, the micro panel will provide an automatic printout whenever a fault occurs. Detailed explanation of the print function is given under "Print Key" located in the Keypad and Display section.

YORK recommends the field tested WEIGH-TRONIX model 1220 printer (or former IMP 24). This is a compact low cost printer that is ideal for service work and data logging.

The WEIGH-TRONIX printer can be obtained by contacting WEIGH-TRONIX for purchase information at:

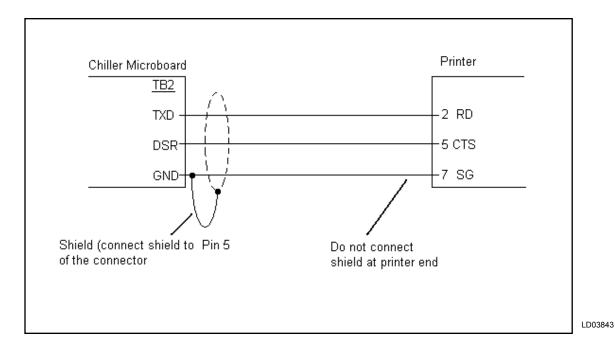
WEIGH-TRONIX 2320 Airport Blvd. Santa Rosa, CA 95402 Phone: 1-800-982-6622 or 1-707-527-5555 (International Orders Only)

The part number for the printer that is packaged specifically for YORK is P/N 950915576. The cable to connect the printer can either be locally assembled from the parts listed, or ordered directly from WEIGH-TRONIX under part number 287-040018.

Parts

The following parts are required:

- 1. WEIGH-TRONIX model 1220 printer.
- 2. 2.25" (5.7cm) wide desk top calculator paper.
- 3. 25 ft. (7.62m) maximum length of Twisted Pair Shielded Cable (minimum 3 conductor), #18 AWG stranded, 300V minimum insulation.
- One 25 pin Cannon connector and shell. Connector: Cannon P/N DB-25P or equivalent.


Shell: Cannon P/N DB-C2-J9.

Assembly and Wiring

All components should be assembled and wired as shown in FIG. 21. Strip the outside insulation back several inches and individual wires about 3/8" (9.5 mm) to connect the cable at the Microboard. Do not connect the shield at the printer-end of the cable.

Obtaining a Printout

A printout is obtained by pressing the "PRINT" key on the keypad and then pressing either the "OPER DATA" key or "HISTORY" key.

TROUBLESHOOTING

TABLE 36 - TROUBLESHOOTING

PROBLEM	CAUSE	SOLUTION	
No display on panel. Unit will not operate.	1. No 115VAC to 1T.	1a. Check wiring and fuse 3FU	
		 b. Check wiring emergency stop contacts 5 to L of CTB2 Terminal Block. 	
		c. Replace 1T	
	2. No 24VAC to Microboard	2. Check wiring 1T to Microboard.	
	 3. 1T defective, no 24VAC output. 	3. Replace 1T	
	 Short in wire to temp. sensors or pressure transducers. 	 Unplug connections at Microboard to isolate. 	
	5. Defective Microboard or Display board.	5. Replace Microboard. Contact YORK Service before Replacing circuit Boards!	
"FLOW SWITCH/REM STOP NO RUN PERMISSIVE"	1. No chilled liquid flow.	1. Check chilled liquid flow.	
	 Flow switch improperly installed. 	 Check that the flow switch is installed according to manufacturer's instructions. 	
	3. Defective flow switch.	3. Replace flow switch.	
	4. Remote cycling device open.	 4. Check cycling devices connected to terminals 13 and 14 of the CTB1 Terminal Block. 	
"LOW SUCTION PRESSURE" FAULT	 Improper suction pressure cutouts adjustments. 	1. Adjust per recommended settings.	
	2. Low refrigerant charge.	 Repair leak if necessary and add refrigerant. 	
		CONT'D	

JOHNSON CONTROLS

TROUBLESHOOTING (CONT'D)

PROBLEM	CAUSE	SOLUTION	
"LOW SUCTION PRESSURE" FAULT (CONT'D)	4. TXV defective.	4. Replace TXV.	
	5. Reduced flow of chilled	5. Check GPM (See "Limita tions" liquid through the cooler in Installation section). Check operation of pump, clean pump strainer, purge chilled liquid system of air.	
	 Defective suction pressure transducer/low pressure switch or wiring. 	6. Replace transducer/low pressure switch or faulty wiring. Refer to "Service" section for pressure/voltage formula.	
	7. LLSV defective	7. Replace LLSV	
	8. EEV Unit Setup in TXV mode.	8. Place in Service Mode & program for EEV.	
"HIGH DISCHARGE PRESSURE" FAULT	 Condenser fans not operating or operating backwards. 	 Check fan motor, fuses, and contactors. Assure fan blows air upward. 	
	2. Too much refrigerant.	2. Remove refrigerant.	
	3. Air in refrigerant system.	 Evacuate and recharge system. 	
	4. Defective discharge pressure transducer.	 Replace discharge pressure transducer. Refer to Service section for pressure/voltage formula. 	
"LOW LIQUID TEMP" FAULT	 Improperly adjusted leaving chilled liquid temp. cutout (glycol only). 	1. Re-program the leaving chilled liquid temp. cutout.	
	 Micro panel setpoint/range values improperly programmed. 	2. Re-adjust setpoint/range.	
	3. Chilled liquid flow too low.	 Increase chilled liquid flow - refer to Limitations in Instal- lation section. 	
	 Defective LWT or RWT sensor (assure the sensor is properly installed in the bottom of the well with a generous amount of heat) conductive compound). 	 Compare sensor against a known good temperature sensing device. Refer to Service section for temp./ voltage table. CONT'D 	

TROUBLESHOOTING (CONT'D)

PROBLEM	PROBLEM CAUSE S		
"MP / HPCO" FAULT	 Compressor internal motor protector (MP) open. 	 Verify refrigerant charge is not low. Verify superheat setting of °10 - 15°F (5.6° - 8.3°C). Verify correct com- pressor rotation. Verify compressor is not over loaded. 	
	2. External overload tripped.	2. Determine cause and reset.	
	3. HPCO switch open.	3. See "High Press. Disch." Fault.	
	4. Defective HPCO switch.	4. Replace HPCO switch.	
	5. Defective CR relay.	5. Replace relay.	
COMPRESSOR(S) WON'T START	1. Demand not great enough.	 No problem. Consult "Installation" Manual to aid in understanding compres- sor operation and capacity control. 	
	 Defective water temperature sensor. 	 Compare the display with a thermometer. Should be within +/- 2 degrees. Refer to Service section for RWT/ LWT temp./voltage table. 	
	3. Contactor/Overload failure.	3. Replace defective part.	
	4. Compressor failure.	essor failure. 4. Diagnose cause of failure and replace.	
LACK OF COOLING EFFECT	 Fouled evaporator surface. Low suction pressure will be observed. 	1. Contact the local YORK service representative.	
	 Improper flow through the evaporator. 	 Reduce flow to within chiller design specs. See Limita- tions in Installation section. 	
	 Low refrigerant charge. Low suction pressure will be observed. 	 Check subcooling and add charge as needed. 	

THIS PAGE INTENTIONALY BLANK

10

MAINTENANCE

It is the responsibility of the equipment owner to provide maintenance on the system.

IMPORTANT

If system failure occurs due to improper maintenance during the warranty period, YORK will not be liable for costs incurred to return the system to satisfactory operation. The following is intended only as a guide and covers only the chiller unit components. It does not cover other related system components which may or may not be furnished by YORK. System components should be maintained according to the individual manufacture's recommendations as their operation will affect the operation of the chiller.

COMPRESSORS

Oil Level check

The oil level can only be tested when the compressor is running in stabilized conditions, to ensure that there is no liquid refrigerant in the lower shell of the compressor. When the compressor is running at stabilized conditions, the oil level must be between 1/4 and 3/4 in the oil sight glass. Note: at shutdown, the oil level can fall to the bottom limit of the oil sight glass. Use YORK "F" oil when adding oil.

Oil Analysis

The oil used in these compressors is pale yellow in color (mineral oil). If the oil color darkens or exhibits a change in color, this may be an indication of contaminants in the refrigerant system. If this occurs, an oil sample should be taken and analyzed. If contaminants are present, the system must be cleaned to prevent compressor failure.

Never use the scroll compressor to pump the refrigerant system down into a vacuum. Doing so will cause internal arcing of the compressor motor which will result in failure of compressor.

CONDENSER FAN MOTORS

Condenser fan motors are permanently lubricated and require no maintenance.

CONDENSER COILS

Dirt should not be allowed to accumulate on the condenser coil surfaces. Cleaning should be as often as necessary to keep coils clean.

Exercise care when cleaning the coil so that the coil fins are not damaged.

OPERATING PARAMETERS

Regular checks of the system should be preformed to ensure that operating temperatures and pressures are within limitations, and that the operating controls are set within proper limits. Refer to the Operation, Start-Up, and Installation sections of this manual.

ON-BOARD BATTERY BACK-UP

U17 is the Real Time Clock chip that maintains the date/ time and stores customer programmed setpoints. Anytime the chiller is to be off (no power to the microboard) for an extended time (weeks/months), the clock should be turned off to conserve power of the on-board battery. To accomplish this, the J11 jumper on the microboard must be moved to the "CLKOFF" position while power is still supplied to the microboard.

The unit evaporator heater is 120VAC. Disconnecting 120VAC power from the unit, at or below freezing temperatures, can result in damage to the evaporator and unit as a result of the chilled liquid freezing.

OVERALL UNIT INSPECTION

In addition to the checks listed on this page, periodic overall inspections of the unit should be accomplished to ensure proper equipment operation. Items such as loose hardware, component operation, refrigerant leaks, unusual noises, etc. should be investigated and corrected immediately.

ISN CONTROL

RECEIVED DATA (CONTROL DATA)

The Middle Market receives 8 data values from the ISN. The first 4 are analog values and the last 4 are digital values. These 8 data values are used as control parameters when in REMOTE mode. When the unit is in LOCAL mode, these 8 values are ignored. If the unit receives no valid ISN transmission for 5 minutes it will revert back to all local control values. TABLE 37 lists the 5 control parameters. These values are found under feature 54 on the ISN.

TABLE 37 - ISN RECEIVED DATA

ISN PAGE	CONTROL DATA
P03	SETPOINT
100	99 = AUTO
P04	LOAD LIMIT STAGE (0,1, 2)
P05	_
P06	_
P07	START/STOP COMMAND
	(0 = STOP, 1 = RUN)
P08	—
P09	_
P10	HISTORY BUFFER REQUEST
P10	(0 = CURRENT DATA, 1 = LAST HISTORY DATA)

TRANSMITTED DATA

After receiving a valid transmission from the ISN, the unit will transmit either operational data or history buffer data depending on the "History Buffer Request" on ISN PAGE 10. Data must be transmitted for every ISN page under feature 54. If there is no value to be sent to a particular page, a zero will be sent. TABLES 38-39 show the data values and page listings for this unit.

TABLE 38 - ISN TRANSMITTED DATA

ISN PAGE	CHARACTER	ТҮРЕ	DATA	
P11	8-11	Analog	Leaving Chilled Liquid Temp.	
P12	12-15	Analog	Retrun Chilled Liquid Temp.	
P13	16-19	Analog	-	
P14	20-23	Analog	-	
P15	24-27	Analog	SYS 1 Suction Temp. (EEV Only)	
P16	28-31	Analog	Ambient Air Temp.	
P17	32-35	Analog	SYS 1 Suction Superheat (EEV Only)	
P18	36-39	Analog	SYS 1 Run Time (Seconds)	
P19	40-43	Analog	SYS 1 Suction Superheat	
P20	44-47	Analog	SYS 1 Discharge Pressure	
P21	48-51	Analog	SYS 1 Cooler Inlet Ref. Temp. (R407c Only)	
P22	52-55	Analog	-	
P23	56-59	Analog	SYS 1 EEV Output % (EEV Output)	
P24	60-63	Analog	SYS 1 Anti-Recycle Timer	
P25	64-67	Analog	Anti-Coincidence Timer	
P26	68-71	Analog	Spare	
P27	72-75	Analog	Spare	
P28	76-79	Analog	Spare	
P29	80-83	Analog	Spare	
P30	84-87	Analog	Spare	
P31	88-91	Analog	-	
P32	92-95	Analog	Spare	
P33	96-99	Analog	Spare	
P34	100-103	Analog	Spare	
P35	104-107	Analog	# of Compressors	
P36	108	Digital	SYS 1 Alarm	
P37	109	Digital	Spare	
P38	110	Digital	Evaporator Heater Status	
P39	111	Digital	Evaporator Pump Status	
P40	112	Digital	SYS 1 Comp. 2 Run	

ISN CONTROL (CON'T)

TABLE 38 - ISN TRANSMITTED DATA (CONT'D)

ISN PAGE	CHARACTER	TYPE	DATA	
P41	113	Digital	Spare	
P42	114	Digital	SYS 1 Liquid Line Solenoid Valve or EEV Pilot Solenoid	
P43	115	Digital	SYS 1 Hot Gas Bypass Valve	
P44	116	Digital	SYS 1 Comp. 2 Run	
P45	117	Digital	Spare	
P46	118	Digital	Spare	
P47	119	Digital	Spare	
P48	120	Digital	SYS 1 Comp.3 Run	
P49	121	Digital	SYS 2 Comp. 3 Run	
P50	122	Digital	Chilled Liquid Type (0=Water, 1=Glycol)	
P51	123	Digital	Ambient Control Mode (0=Std. Ambient, 1=Low Ambient)	
P52	124	Digital	Local/Remote Control Mode (0=Local, 1=Remote)	
P53	125	Digital	Units (0=Imperial, 1= SI)	
P54	126	Digital	Lead/Lag Control Mode (0=Manual,1= Remote)	
P55	127	Digital	-	
P56	128	Coded	* SYS 1 Operational Code	
P57	129	Coded	* SYS 1 Fault Code	
P58	130	Coded	Spare	
P59	131	Coded	Spare	
P60	132	Coded	-	
P61	133	Coded	SYS 1 Condenser Fan Stage	

ISN PAGE	CHARACTER	TYPE	DATA
P62	134	Coded	-
P63	135	Coded	Spare
P64	136	Coded	-
P65	137	Coded	Unit Control Mode (0=Leaving Water, 1=Return Water, 2=Discharge Air, 3=Suction Press., 4=Cooling 5=Heating)
P66	138-141	Analog	Anti-Recycle Timer
P67	142-145	Analog	Leaving Chilled Liquid Temp. Cutout
P68	146-149	Analog	Low Ambient Temp. Cutout
P69	150-153	Analog	-
P70	154-157	Analog	Low Suction Pressure Cutout
P71	158-161	Analog	High Discharge Pressure Cutout
P72	162-165	Analog	Setpoint
P73	166-169	Analog	Cooling Range
P74	170-173	Analog	-
P75	174-177	Analog	-
P76	178-181	Analog	SYS 1 Discharge Temp. (EEV Only-Optional)
P77	182-185	Analog	SYS 1 Discharge Superheat (EEV Only- Optional)
P78	186-189	Analog	Spare
P79	90-193	Analog	Spare
P80	194	Digital	-
P81	195	Digital	-
P82	196	Digital	-
P83	197	Digital	-
P84	198	Digital	-

ISN CONTROL (CON'T)

TABLE 39 - ISN OPERATIONAL AND FAULT CODES

P56/58	OPERATIONAL CODE	P57/59	FAULT CODE	
0	NO ABNORMAL CONDITION	0	NO FAULT	
1	UNIT SWITCH OFF	1	VAC UNDER VOLTAGE	
2	SYSTEM SWITCH OFF	2	LOW AMBIENT TEMPERATURE	
3	LOCK-OUT	3	HIGH AMBIENT TEMPERATURE	
4	UNIT FAULT	4	LOW LEAVING CHILLED LIQUID TEMP	
5	SYSTEM FAULT	5	HIGH DISCHARGE PRESSURE	
6	REMOTE SHUTDOWN	6	HIGH DIFFERENTIAL OIL PRESSURE	
7	DAILY SCHEDULE SHUTDOWN	7	LOW SUCTION PRESSURE	
8	NO RUN PERMISSIVE	8	HIGH MOTOR CURRENT	
9	NO COOL LOAD	9	LLSV NOT ON	
10	ANTI-COINCIDENCE TIMER ACTIVE	10	LOW BATTERY WARNING	
11	ANTI-RECYCLE TIMER ACTIVE	11	HIGH OIL TEMPERATURE	
12	MANUAL OVERRIDE	12	HIGH DISCHARGE TEMPERATE	
13	SUCTION LIMITING	13	IMPROPER PHASE ROTATION	
14	DISCHARGE LIMITING	14	LOW MOTOR CURRENT /MP / HPCO	
15	CURRENT LIMITING	15	MOTOR CURRENT UNBALANCED	
16	LOAD LIMITING	16	LOW DIFFERENTIAL OIL PRESSURE	
17	COMPRESSOR(S) RUNNING	17	GROUND FAULT	
18	HEAT PUMP LOAD LIMITING	18	MP /HPCO	
		19	LOW EVAPORATOR TEMPERATURE	
		20	INCORRECT REFRIGERANT	
		20	PROGRAMMED	
		21 REQUIRED	POWER FAILURE, MANUAL RESET	
		22	UNIT MOTOR CURRENT	
		23	LOW SUPERHEAT	
		24	SENSOR FAIL	

* The operational and fault codes sent to pages 56 through 59 are defined in Table 39. Note that this table of fault and operational codes is for all DX products.

RECOMMENDED SPARE PARTS

TABLE 40 - RECOMMENDED SPARE PARTS - YCAL STYLE 'D' CHILLERS

PAGE REF. & ITEM NUMBER	DESCRIPTION	MODEL NUMBER YCAL	VOLTAGE CODE	PART NUMBER
		0040 0004	-17 &-28	024-35427-002
Dogo 12 Itom 1	Ean Motor (Standard)		-40	024-35427-004
Page 13, Item 1	Fan Motor (Standard)	0012-0021	-46 & -50	024-35427-001
			-58	024-35427-003
			-17	024-27322-003
			-28	024-27322-006
Page 13, Item 1	Fan Motor (Standard)	0025-0032	-40	024-27322-004
			-46 & -50	024-27322-007
			-58	024-27322-002
Dama 42, Itama 2	Fan Blade	0012-0021	All	026-43008-000
Page 13, Item 2		0025-0032		026-43090-000
	Thermal Expansion Valve	0012	All	025-34155-000
Page 16, Item 1		0018-0021		025-40655-000
		0025-0032		025-27536-000
David 40 litera 4	Valve, Liquid Line	0012-0021	A 11	022-11306-000
Page 16, Item 4		0025-0032	All	022-10022-000
Page 24, Item OIL	Oil, Compressor	All	All	011-00434-000
Page 44, Item 1	Sensor, Outside Air	All	All	025-40273-008
Page 44, Item 2	Sensor, Entering Water Temp.	All	All	025-40273-002
Page 44, Item 3	Sensor, Leaving Water Temp	All	All	025-40273-007
Page 44, Item 5	Transducer, Suction Pressure	All	All	025-29583-000
Page 44, Item 6	Transducer, Discharge Pressure	All	All	025-29139-001

NOTE: All parts should be purchased from your local YORK Sales and Service Center.

NOTES

P.O. Box 1592, York, Pennsylvania USA 17405-1592 Copyright © by Johnson Controls 2006 Form 150.66-NM2 (906) New Release

Tele. 800-861-1001 www.york.com